Aminovа EV, Mushinsky AA, Korotkova AM, Dergileva TT

Exposure of ultrafine silica particles on biochemical indicators of plants Solánum tuberósum

DOI: 10.33284/2658-3135-102-4-33

UDC 633.491:577.17

Acknowledgements:

The studies were conducted according to the Integrated programs of the Ural Branch of the Russian Academy of Sciences 2018-2020 “Development of the theoretical foundations of practical methods for increasing the efficiency of crop production using nanotechnological solutions” No. 18-8-9-18

 

Exposure of ultrafine silica particles on biochemical indicators of plants Solánum tuberósum

Evgenia V Aminovа1, Alexander A Mushinsky 1, Anastasia M Korotkova 1, 2, Tamara T Dergileva3

1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

2Orenburg State University (Orenburg, Russia)

3South-Ural Research Institute of Horticulture and Potato-growing-Branch of Ural Federal Agrarian

Research and Development Center of the Ural Branch of the Russian Academy of Agrarian Sciences (Chelyabinsk, Russia)

Summary. The aim of the study was to assess the effect of ultrafine particles of SiO2 on biochemical parameters of Solánum tuberósum plants. The biological activity of SiO2 nanoform on potato tubers was tested using five increasing concentrations of silicon (0.03; 0.09; 0.18; 0.21 and 0.36 g/kg potato) and control (without treatment with ultrafine particles). An analysis of the chlorophyll content in Solánum tuberósum sprouts showed that, at SiO2 nanoform concentrations of 0.03…0.21 g/kg (according to silicon), the chlorophyll a content was 9.0-48.8% higher than the control (P≤0.05) and the content of carotenoids – by 29.7%. In a growing experiment, it was found that the use of higher concentrations of ultrafine particles of SiO2 (0.21 and 0.36 g / kg for silicon) ensured the maximum accumulation of silicon in sprouts (4.79…4.87 μg/g), roots (3,54…3.59 μg/g) and tubers (3.87…3.95 μg/g). Moreover, in the field experiment, the accumulation of silicon in the stems and leaves exceeded the control for all drug concentrations by 7.70-30.1% and 5.0-39.1%, respectively (P≤0.05). As a result of the studies, a decrease in the protein content in potato tubers after exposure to the SiO2 nanoform in all experimental variants was revealed.

Key words: potato, tubers, silicon oxide, ultrafine silica particles, photosynthetic pigments, protein.

References

  1. GOST 13496.4-93. Feed, compound feed, compound feed raw materials. Methods for determination of nitrogen and crude protein. Introd 1995-01-01. Moscow: Standartinform; 2011: 17 p.
  2. Dospekhov BA. Field experiment methodology: (with the basics of statistical processing of research results). 5th ed. and reslave. Moscow: Agropromizdat: 1985: 351 p.
  3. Kornilina VV.Influence of the false aspen tinder fungus (PHELLINUS TREMULAE BOND ET BORISS) on the maintenance of pigments in aspen leaves in the woods of the Ulyanovsk region. Fundamental Reserch. 2012;9-3:568-572.
  4. Research methodology for potato culture. Dep of crop production and selection. All-Union. Acad. Agr. Sciences named after VI.Lenin, Research Institute of Potato; editorial: Andryushina NA, et al. Moscow, 1967: 225 p.
  5. Smashevsky ND. Workshop on plant physiology: Textbook. Astrakhan: Publishing House Astrakhan University; 2011: 77 p.
  6. AsgariF, MajdA, JonoubiP, NajafiF. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem. 2018;127:152-160.doi: https://doi.org/10.1016/j.plaphy.2018.03.021
  7. Bao-shan L, Shao-qi D, Chun-hui L, Li-jun F, Shu-chun Q, Min Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings.J of Forest Res. 2004;15(2):138-140. doi: https://doi.org/10.1007/BF02856749
  8. Chitchumroonchokchai C, Diretto G, Parisi B, Giuliano G, Failla ML. Potential of golden potatoes to improve vitamin A and vitamin E status in developing countries. 2017;12(11):e0187102. doi: https://doi.org/10.1371/journal.pone.0187102
  9. Crusciol CAC, Pulz AL, Lemos LB, Soratto RP, Lima GPP. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci. 2009;49(3):949-954. doi: https:// doi.org/10.2135/cropsci2008.04.0233
  10. Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H, Labbé C, Isenring P, Belzile FJ, Bélanger RR. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. J Plant. 2015;83(3):489-500. doi: https://doi.org/10.1111/tpj.12904
  11. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci. 2016;4:20. doi: https://doi.org/10.3389/fenvs.2016.00020
  12. Gowayed SMH, Al-Zahrani HSM, Metwali EMR. Improving the salinity tolerance in potato (Solanum tuberosum) by exogenous application of silicon dioxide nanoparticles. Int J of Agric and Biol. 2017;19:183-194. doi: https://doi.org/10.17957/IJAB/15.0262
  13. Haynes MJ, Vincent K, Fischhoff C, Bremner AP, Lanlo O, Hankey GJ. Assessing the risk of stroke from neck manipulation: a systematic review. Int J Clin Pract. 2012;66(10):940-947. doi: https://doi.org/10.1111/j.1742-1241.2012.03004.x
  14. Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol. 2012;46(15): 8467-8474. doi: https://doi.org/10.1021/es3019397
  15. Ma JF, Goto S, Tamai K, Ichii M. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 2001;127(4):1773-1780. doi: https://doi.org/10.1104/pp.010271
  16. Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VSY, Trewyn BG, Lyznik LA, Wang K. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol. 2014;164:537-547. doi: https://doi.org/10.1104/pp.113.233650
  17. Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M. Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol and Biochem. 2017;115:25-33. doi: https:// doi.org/10.1016/j.plaphy.2017.03.009
  18. Pilon C, Soratto RP, Moreno LA. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 2013;53(4):1605-1614. doi: https://doi.org/10.2135/cropsci2012.10.0580
  19. Pošćić F, Mattiello A, Fellet G, Miceli F, Marchiol L. Effects of cerium and titanium oxide nanoparticles in soil on the nutrient composition of barley (Hordeum vulgare L.) kernels. Int J Environ Res Public Health. 2016;13(6):577. doi: https://doi.org/10.3390/ijerph13060577
  20. Rad JS, Karimi J, Mohsenzadeh S, Rad MS, Moradgholi J. Evaluating SiO2 nanoparticles effects on developmental characteristic and photosynthetic pigment contents of Zea mays L. Bull Environ Pharmacol Life Sci. 2014;3:194-201.
  21. Reynolds GH. Forward to the future nanotechnology and regulatory policy. Pacific Res Inst. 2002;24:1-23.
  22. Slomberg DL, Schoenfisch MH. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol. 2012;46(18):10247-10254. doi: https://doi.org/10.1021/es300949f
  23. Stewart CR. Proline accumulation: biochemical aspects. Physiology and Biochemistry of Drought Resistance in Plants. Paleg LG, Aspinall D, editors. Sydney: Academic Press; 1981: 243-259.
  24. Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere. 2016; 152:81-91. https://doi.org/10.1016/j.chemosphere.2016.02.096
  25. Vulavala VKR, Elbaum R, Yermiyahu U et al. Silicon fertilization of potato: expression of putative transporters and tuber skin quality. Planta. 2016;243(1):217-229. doi: https://doi.org/10.1007/s00425-015-2401-6
  26. Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants–A soil microcosm experiment. Chemosphere. 2016;147:88-97. doi: https://doi.org/10.1016/j.chemosphere.2015.12.076
  27. Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci. 2010;22(1):155-160. doi: https://doi.org/10.1016/S1001-0742(09)60087-5
  28. Wintermans JFGM, Mots AD Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Et Biophys Acta. 1965;109(2):448-453. doi: https://doi.org/10.1016/0926-6585(65)90170-6
  29. Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P. Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J of Green Nanotech.2011;3(3):180-190. doi: https://doi.org/10.1080/19430892.2011.628581
  30. Zaman MS, Ali GM, Muhammad A, Farooq K, Hussain I. In vitro screening of salt tolerance in potato (Solanum tuberosum L.) varieties. Sarhad J of Agric. 2015;31(2):106-113. doi: http://dx.doi.org/10.17582/journal.sja/2015/31.2.106.113
  31. Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. JournalEnvironmentMonitoring. 2008;10:713-717. doi: https://doi.org/10.1039/B805998E

Aminova Evgenia Vladimirovna, Cand. Sci. (Agr.), Leading Researcher, Potato Department, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel .: 8-912-841-19-31, e -mail: aminowa.eugenia2015@yandex.ru

Mushinsky Alexander Alekseevich, Dr. Sci. (Agr.), Associate Professor, Head of the Department of Potato, , Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel: 8-905-819-35-92, e -mail: san2127@yandex.ru

Korotkova Anastasia Mikhailovna, Cand. Sci. (Biol.), Researcher at the Laboratory for Biological Testing and Expertises, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., 460000, Orenburg; Researcher at the Institute of Bioelementology, 460018, Orenburg, Russia, Orenburg State University, 13 Prospect Pobedy Ave., e-mail: anastasiaporv@mail.ru

Dergileva Tamara Tikhonovna, Senior Researcher, Laboratory for Potato Breeding, South-Ural Research Institute of Horticulture and Potato-growing-Branch of Ural Federal Agrarian Research and Development Center of the Ural Branch of the Russian Academy of Agrarian Sciences, 454902, Chelyabinsk, Russia, 16 Gidrostroy St., Shershni settlement, e-mail: kartofel_chel@mail.ru

Received: 7November 2019; Accepted: 16 December 2019;Published: 31 December 2019

Download