Tarasova E.I, Notovа S.V.
DOI: 10.33284/2658-3135-103-3-58
UDC 636.22/28:636.088.5:575.113
Acknowledgements:
Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0526-2019-0001)
Gene markers of the productive characteristics of dairy cattle (review)
Ekaterina I Tarasova, Svetlana V Notovа
Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)
Summary. The most economically important productive characteristics that contribute to the development of the dairy industry are milk yield, milk fat and protein production, as well as the percentage of these indicators. In recent years, cattle breeding programs based on molecular genetic research methods have attracted great attention. The strategy of the candidate gene allows you to focus the analysis on specific genes involved in key metabolic pathways or physiological processes that can affect the features of interest. The main ones are genes encoding proteins and participating in lactation processes, as well as genes that regulate these processes. The review provides a brief description of the genes encoding caseins of milk, the polymorphisms of which affect the protein and fat content in milk, which has an important role in the production of cheese. Genes encoding factors governing the expression of milk protein are also described. These include prolactin, which affects milk yield, growth hormone, which plays a key role in lactation, diacylglycerol-acyltransferase 1, which is a key enzyme for the synthesis of triacylglycerols, the main fraction of milk fat, leptin, which is involved in the regulation of prolactin secretion, and some others.
Key words: cattle, milk productivity, marker genes, milk caseins, whey proteins, prolactin, leptin, growth hormone, diacylglycerol acyltransferase 1.
References
- Dolmatova IYu, Gareeva I, Iliysov А Effects of genetic variants of beta-lactoglodulin gene in cattle milk production. Vestnik of the Bashkir State Agrarian University.2010;1:18-22.
- Dolmatova IYu, Ilyasov А Association of cattle growth hormone gene polymorphism with milk productivity. Russian Journal of Genetics. 2011;47(6):814-820. doi: 10.1134/S1022795411060081
- Shevtsova AA, Klimov EA, Kovalchuk SN. Review of genes variability associated with milk productivity of dairy cattle.International journal of applied and fundamental research. 2018;11:194-200. doi: 10.17513/mjpfi.12475
- Abdolmohammadi A, Zamani P. SNP exploring in the middle and terminal regions of the IGF-1 gene and association with production and reproduction traits in Holstein cattle. Gene. 2014;540(1):92-95. doi:10.1016/j.gene.2014.02.011
- Ahmed AS, Rahmatalla S, Bortfeldt R, Arends D, Reissmann M, Brockmann GA. Milk protein polymorphisms and casein haplotypes in Butana J Appl Genet. 2017;58(2):261‐271. doi: 10.1007/s13353-016-0381-2
- Akis I, Oztabak K, Gonulalp I, Mengi A, Un C. IGF-1 and IGF-1r gene polymorphisms in East Anatolian Red and South Anatolian Red cattle breeds. Genetika. 2010;46(4):497‐
- Argetsinger LS, Campbell GS, Yang X et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 1993;74(2):237-244. doi:10.1016/0092-8674(93)90415-m
- Argov-Argaman N, Mida K, Cohen BC, Visker M, Hettinga K. Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane. PLoS One. 2013;8(7):e68707. doi: 1371/journal.pone.0068707
- Armstrong DG, Webb R. Ovarian follicular dominance: the role of intraovarian growth factors and novel proteins. Rev Reprod. 1997;2(3):139-146. doi: 10.1530/ror.0.0020139
- Balteanu VA, Carsai TC, Vlaic A. Identification of an intronic regulatory mutation at the buffalo αS1-casein gene that triggers the skipping of exon 6. Mol Biol Rep. 2013;40(7):4311‐ doi: 10.1007/s11033-013-2518-2
- Barbosa da Silva MV, Sonstegard TS, Thallman RM, Connor EE, Schnabel RD, Van Tassell CP. Characterization of DGAT1 allelic effects in a sample of North American Holstein cattle. Anim Biotechnol. 2010;21(2):88‐ doi: 10.1080/10495390903504625
- Bennewitz J, Reinsch N, Paul S et al. The DGAT1 K232A mutation is not solely responsible for the milk production quantitative trait locus on the bovine chromosome 14. J Dairy Sci. 2004;87(2):431‐ doi: 10.3168/jds.s0022-0302(04)73182-3
- Blott S, Kim JJ, Moisio S et al. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics. 2003;163(1):253‐
- Blum WF, Alherbish A, Alsagheir A et al. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders. Endocr Connect. 2018;7(6):R212-R222. doi: 10.1530/EC-18-0099
- Bonfatti V, Di Martino G, Cecchinato A, Degano L, Carnier P. Effects of β-k-casein (CSN2-CSN3) haplotypes, β-lactoglobulin (BLG) genotypes, and detailed protein composition on coagulation properties of individual milk of Simmental J Dairy Sci. 2010a;93(8):3809‐3817. doi: 10.3168/jds.2009-2779
- Bonfatti V, Di Martino G, Cecchinato A, Vicario D, Carnier P. Effects of β-k-casein (CSN2-CSN3) haplotypes and β-lactoglobulin (BLG) genotypes on milk production traits and detailed protein composition of individual milk of Simmental cows. J Dairy Sci. 2010b;93(8):3797‐ doi: 10.3168/jds.2009-2778
- Bovenhuis H, Visker MHPW, Poulsen NA et al. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. J Dairy Sci. 2016;99(4):3113‐ doi: 10.3168/jds.2015-10462
- Braunschweig M, Hagger C, Stranzinger G, Puhan Z. Associations between casein haplotypes and milk production traits of Swiss Brown J Dairy Sci. 2000;83(6):1387‐1395. doi: 10.3168/jds.S0022-0302(00)75007-7
- Caroli A, Chessa S, Chiatti F et al. Short communication: Carora cattle show high variability in alpha(s1)-casein. J Dairy Sci. 2008;91(1):354‐ doi: 10.3168/jds.2007-0420
- Caroli A, Rizzi R, Lühken G, Erhardt G. Short communication: milk protein genetic variation and casein haplotype structure in the Original Pinzgauer cattle. J Dairy Sci. 2010;93(3):1260‐ doi: 10.3168/jds.2009-2521
- Cecchinato A, Ribeca C, Maurmayr A et al. Short communication: Effects of β-lactoglobulin, stearoyl-coenzyme A desaturase 1, and sterol regulatory element binding protein gene allelic variants on milk production, composition, acidity, and coagulation properties of Brown Swiss cows. J Dairy Sci. 2012;95(1):450‐ doi: 10.3168/jds.2011-4581
- Cole JB, Wiggans GR, Ma L et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics. 2011;12:408. doi: 10.1186/1471-2164-12-408
- Connor EE, Ashwell MS, Dahl GE. Characterization and expression of the bovine growth hormone-releasing hormone (GHRH) Domest Anim Endocrinol. 2002;22(4):189‐200. doi: 10.1016/s0739-7240(02)00129-7
- Conte G, Mele M, Chessa S et al. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J Dairy Sci. 2010;93(2):753‐ doi: 10.3168/jds.2009-2581
- Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10(1):68‐ doi:10.1210/edrv-10-1-68
- Deng F, Xia C, Jia X et al. Comparative study on the genetic diversity of GHR gene in tibetan cattle and holstein cows. Anim Biotechnol. 2015;26(3):217‐ doi: 10.1080/10495398.2014.993082
- Do DN, Bissonnette N, Lacasse P et al. Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein J Dairy Sci. 2017;100(3):1955‐1970. doi: 10.3168/jds.2016-11910
- Dong CH, Song XM, Zhang L, Jiang JF, Zhou JP, Jiang YQ. New insights into the prolactin-RsaI (PRL-RsaI) locus in Chinese Holstein cows and its effect on milk performance traits.Genet Mol Res. 2013;12(4):5766‐ doi: 10.4238/2013.November.22.3
- Egger-Danner C, Cole JB, Pryce JE et al. Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional Animal. 2015;9(2):191‐207. doi: 10.1017/S1751731114002614
- El-Domany WB, Radwan HA, Ateya AI, Ramadan HH, Marghani BH, Nasr SM. Genetic Polymorphisms in LTF/EcoRI and TLR4/AluI loci as candidates for milk and reproductive performance assessment in Holstein cattle. Reprod Domest Anim. 2019;54(4):678‐ doi: 10.1111/rda.13408
- Falaki M, Prandi A, Corradini C et al. Relationships of growth hormone gene and milk protein polymorphisms to milk production traits in Simmental cattle. J Dairy Res. 1997;64(1):47‐ doi: 10.1017/s0022029996001872
- Fontanesi L, Calò DG, Galimberti G et al. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Anim Genet. 2014;45(4):576‐ doi: 10.1111/age.12164
- Gautier M, Capitan A, Fritz S, Eggen A, Boichard D, Druet T. Characterization of the DGAT1 K232A and variable number of tandem repeat polymorphisms in French dairy cattle. J Dairy Sci. 2007;90(6):2980‐ doi: 10.3168/jds.2006-707
- Ge W, Davis ME, Hines HC, Irvin KM. Rapid communication: Single nucleotide polymorphisms detected in exon 10 of the bovine growth hormone receptor gene. J Anim Sci. 2000;78(8):2229‐ doi: 10.2527/2000.7882229x
- Giblin L, Butler ST, Kearney BM, Waters SM, Callanan MJ, Berry DP. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires. BMC Genet. 2010;11:73. doi: 10.1186/1471-2156-11-73
- Grisart B, Coppieters W, Farnir F et al. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12(2):222‐ doi: 10.1101/gr.224202
- Grisart B, Farnir F, Karim L et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. PNAS. 2004;101(8):2398‐ doi: 10.1073/pnas.0308518100
- Grochowska R, Sørensen P, Zwierzchowski L, Snochowski M, Løvendahl P. Genetic variation in stimulated GH release and in IGF-I of young dairy cattle and their associations with the leucine/valine polymorphism in the GH gene. J Anim Sci. 2001;79(2):470‐ doi: 10.2527/2001.792470x
- Grochowska R, Zwierzchowski L, Snochowski M, Reklewski Z. Stimulated growth hormone (GH) release in Friesian cattle with respect to GH genotypes. Reprod Nutr Dev. 1999;39(2):171‐ doi: 10.1051/rnd:19990202
- Grossi DdoA, Buzanskas ME, Grupioni NV et al. Effect of IGF1, GH, and PIT1 markers on the genetic parameters of growth and reproduction traits in Canchim cattle. Mol Biol Rep. 2015;42(1):245‐ doi: 10.1007/s11033-014-3767-4
- Hayes BJ, Lewin HA, Goddard ME. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 2013;29(4):206‐ doi: 10.1016/j.tig.2012.11.009
- He X, Chu MX, Qiao L et al. Polymorphisms of STAT5A gene and their association with milk production traits in Holstein cows. Mol Biol Rep. 2012;39(3):2901-2907. doi: 10.1007/s11033-011-1051-4
- Heidari M, Azari MA, Hasani S, Khanahmadi A, Zerehdaran S. Effect of polymorphic variants of GH, Pit-1, and beta-LG genes on milk production of Holstein cows. Genetika. 2012;48(4):503-507.
- Huang W, Peñagaricano F, Ahmad KR, Lucey JA, Weigel KA, Khatib H. Association between milk protein gene variants and protein composition traits in dairy cattle. J Dairy Sci. 2012;95(1):440‐ doi: 10.3168/jds.2011-4757
- Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999;20(6):761-787. doi: 10.1210/edrv.20.6.0382
- Ikonen T, Bovenhuis H, Ojala M, Ruottinen O, Georges M. Associations between casein haplotypes and first lactation milk production traits in Finnish Ayrshire cows. J Dairy Sci. 2001;84(2):507‐ doi: 10.3168/jds.S0022-0302(01)74501-8
- Jiang L, Liu J, Sun D et al. Genome wid e association studies for milk production traits in Chinese Holstein population. PLoS One. 2010;5(10):e13661. doi: 10.1371/journal.pone.0013661
- Johnson MA, Firth SM. IGFBP-3: a cell fate pivot in cancer and disease. Growth Horm IGF Res. 2014;24(5):164-173. doi: 10.1016/j.ghir.2014.04.007
- Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3-34. doi: 10.1210/edrv-16-1-3
- Kasuya E. Secretory pattern and regulatory mechanism of growth hormone in cattle. Anim Sci J. 2016;87(2):178‐ doi: 10.1111/asj.12418
- Kaupe B, Brandt H, Prinzenberg EM, Erhardt G. Joint analysis of the influence of CYP11B1 and DGAT1 genetic variation on milk production, somatic cell score, conformation, reproduction, and productive lifespan in German Holstein J Anim Sci. 2007;85(1):11‐21. doi: 10.2527/jas.2005-753
- Komatsu M, Kojima M, Okamura H et al. Age-related changes in gene expression of the growth hormone secretagogue and growth hormone-releasing hormone receptors in Holstein-Friesian cattle. Domest Anim Endocrinol. 2012;42(2):83‐ doi: 10.1016/j.domaniend.2011.09.006
- Kuehn C, Edel C, Weikard R, Thaller G. Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGAT1) gene on milk production traits in German Holstein cows. BMC Genet.2007;8:62. doi: 10.1186/1471-2156-8-62
- Kühn C, Thaller G, Winter A et al. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics. 2004;167(4):1873-1881. doi: 10.1534/genetics.103.022749
- Lacasse P, Lollivier V, Dessauge F, Bruckmaier RM, Ollier S, Boutinaud M. New developments on the galactopoietic role of prolactin in dairy ruminants. Domest Anim Endocrinol. 2012;43(2):154‐ doi: 10.1016/j.domaniend.2011.12.007
- Lacasse P, Ollier S, Lollivier V, Boutinaud M. New insights into the importance of prolactin in dairy ruminants. J Dairy Sci. 2016;99(1):864‐ doi: 10.3168/jds.2015-10035
- Lacasse P, Ollier S. The dopamine antagonist domperidone increases prolactin concentration and enhances milk production in dairy cows. J Dairy Sci. 2015;98(11):7856‐ doi: 10.3168/jds.2015-9865
- Lacorte GA, Machado MA, Martinez ML et al. DGAT1 K232A polymorphism in Brazilian cattle breeds. Genet Mol Res. 2006;5(3):475‐
- Lü A, Hu X, Chen H, Dong Y, Pang Y. Single nucleotide polymorphisms of the prolactin receptor (PRLR) gene and its association with growth traits in Chinese cattle. Mol Biol Rep. 2011a;38(1):261‐ doi: 10.1007/s11033-010-0103-5
- Lü A, Hu X, Chen H, Dong Y, Zhang Y, Wang X. Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem Genet. 2011b;49(3-4):177‐ doi: 10.1007/s10528-010-9397-1
- Mai MD, Sahana G, Christiansen FB, Guldbrandtsen B. A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip. J Anim Sci. 2010;88(11):3522‐ doi: 10.2527/jas.2009-2713
- Maj A, Snochowski M, Siadkowska E et al. Polymorphism in genes of growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF1) and its association with both the IGF1 expression in liver and its level in blood in Polish Holstein-Friesian cattle. Neuro Endocrinol Lett. 2008;29(6):981‐
- Martens N, Uzan G, Wery M, Hooghe R, Hooghe-Peters EL, Gertler A. Suppressor of cytokine signaling 7 inhibits prolactin, growth hormone, and leptin signaling by interacting with STAT5 or STAT3 and attenuating their nuclear translocation. J Biol Chem. 2005; 280(14):13817‐ doi: 10.1074/jbc.M411596200
- Martinelli CE Jr, Custódio RJ, Aguiar-Oliveira MH. Fisiologia do eixo GH-sistema IGF [Physiology of the GH-IGF axis]. Arq Bras Endocrinol Metabol. 2008;52(5):717-725. doi: 10.1590/s0004-27302008000500002
- Maxa J, Neuditschko M, Russ I, Förster M, Medugorac I. Genome-wide association mapping of milk production traits in Braunvieh J Dairy Sci. 2012;95(9):5357‐5364. doi: 10.3168/jds.2011-4673
- Metin Kiyici J, Akyüz B, Kaliber M, Arslan K, Aksel EG, Çinar MU. LEP and SCD polymorphisms are associated with milk somatic cell count, electrical conductivity and pH values in Holstein cows. Anim Biotechnol. 2019;1‐ doi: 10.1080/10495398.2019.1628767
- Miglior F, Fleming A, Malchiodi F, Brito LF, Martin P, Baes CF. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J Dairy Sci. 2017;100(12):10251‐ doi: 10.3168/jds.2017-12968
- Miluchová M, Gábor M, Candrák J, Trakovická A, Candráková K. Association of HindIII-polymorphism in kappa-casein gene with milk, fat and protein yield in holstein cattle. Acta Biochim Pol. 2018;65(3):403‐ doi: 10.18388/abp.2017_2313
- Moisio S, Elo K, Kantanen J, Vilkki J. Polymorphism within the 3' flanking region of the bovine growth hormone receptor gene. Anim Genet. 1998;29(1):55‐ doi: 10.1046/j.1365-2052.1998.00254.x
- Molee A, Boonek L, Rungsakinnin N. The effect of beta and kappa casein genes on milk yield and milk composition in different percentages of Holstein in crossbred dairy cattle. Anim Sci J. 2011;82(4):512‐ doi: 10.1111/j.1740-0929.2011.00879.x
- Näslund J, Fikse WF, Pielberg GR, Lundén A. Frequency and effect of the bovine acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. J Dairy Sci. 2008;91(5):2127‐ doi: 10.3168/jds.2007-0330
- Neamt RI, Saplacan G, Acatincai S, Cziszter LT, Gavojdian D, Ilie DE. The influence of CSN3 and LGB polymorphisms on milk production and chemical composition in Romanian Simmental cattle. Acta Biochim Pol. 2017;64(3):493‐ doi: 10.18388/abp.2016_1454
- Nielsen HM, Christensen LG, Odegård J. A method to define breeding goals for sustainable dairy cattle production. J Dairy Sci. 2006;89(9):3615‐ doi: 10.3168/jds.S0022-0302(06)72401-8
- O'Halloran F, Berry DP, Bahar B, Howard DJ, Sweeney T, Giblin L. Polymorphisms in the bovine lactoferrin promoter are associated with reproductive performance and somatic cell count. J Dairy Sci. 2010;93(3):1253-1259. doi: 10.3168/jds.2009-2699
- Patel JB, Chauhan JB. Polymorphism of the prolactin gene and its relationship with milk production in gir and kankrej cattle. J Nat Sci Biol Med. 2017;8(2):167‐ doi: 10.4103/jnsbm.JNSBM_303_16
- Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev. 2004;15(6):435‐ doi: 10.1016/j.cytogfr.2004.09.001
- Poulsen NA, Bertelsen HP, Jensen HB et al. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds. J Dairy Sci. 2013;96(8):4830-4842. doi: 10.3168/jds.2012-6422
- Pretto D, De Marchi M, Penasa M, Cassandro M. Effect of milk composition and coagulation traits on Grana Padano cheese yield under field conditions. J Dairy Res. 2013;80(1):1‐ doi: 10.1017/S0022029912000453
- Ranke MB. Insulin-like growth factor binding-protein-3 (IGFBP-3). Best Pract Res Clin Endocrinol Metab. 2015;29(5):701-711. doi: 10.1016/j.beem.2015.06.003
- Raschia MA, Nani JP, Maizon DO, Beribe MJ, Amadio AF, Poli MA. Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein x Jersey cows. J Anim Sci Technol. 2018;60:31. doi: 10.1186/s40781-018-0189-1
- Rhoads ML, Meyer JP, Kolath SJ, Lamberson WR, Lucy MC. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows. J Dairy Sci. 2008;91(5):1802-1813. doi: 10.3168/jds.2007-0664
- Sanchez MP, Govignon-Gion A, Ferrand M et al. Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds. J Dairy Sci. 2016;99(10):8203‐ doi: 10.3168/jds.2016-11437
- Shi L, Liu L, Lv X et al. Polymorphisms and genetic effects of PRLR, MOGAT1, MINPP1 and CHUK genes on milk fatty acid traits in Chinese Holstein. BMC Genet. 2019;20(1):69. doi: 10.1186/s12863-019-0769-1
- Singh LV, Jayakumar S, Sharma A et al. Comparative screening of single nucleotide polymorphisms in β-casein and κ-casein gene in different livestock breeds of India. Meta Gene. 2015;4:85‐ doi: 10.1016/j.mgene.2015.03.005
- Sodhi M, Mukesh M, Mishra BP, Parvesh K, Joshi BK. Analysis of genetic variation at the prolactin-RsaI (PRL-RsaI) locus in Indian native cattle breeds (Bos indicus). Biochem Genet. 2011;49(1-2):39‐ doi: 10.1007/s10528-010-9383-7
- Tsiaras AM, Bargouli GG, Banos G, Boscos CM. Effect of kappa-casein and beta-lactoglobulin loci on milk production traits and reproductive performance of Holstein cows. J Dairy Sci. 2005;88(1):327‐ doi: 10.3168/jds.S0022-0302(05)72692-8
- Uddin RM, Babar ME, Nadeem A et al. Genetic analysis of prolactin gene in Pakistani cattle. Mol Biol Rep. 2013;40(10):5685‐ doi: 10.1007/s11033-013-2670-8
- Varvio SL, Iso-Touru T, Kantanen J et al. Molecular anatomy of the cytoplasmic domain of bovine growth hormone receptor, a quantitative trait locus. Proc Biol Sci. 2008;275(1642):1525‐ doi: 10.1098/rspb.2008.0181
- Viale E, Tiezzi F, Maretto F, De Marchi M, Penasa M, Cassandro M. Association of candidate gene polymorphisms with milk technological traits, yield, composition, and somatic cell score in Italian Holstein-Friesian sires. J Dairy Sci. 2017;100(9):7271‐ doi: 10.3168/jds.2017-12666
- Wei J, Wagner S, Lu D et al. Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Sci Rep. 2015;5:11735. doi: 10.1038/srep11735
- Winter A, Krämer W, Werner FAO et al. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat Proc Natl Acad Sci USA. 2002;99(14):9300‐9305. doi: 10.1073/pnas.142293799
- Wojdak-Maksymiec K, Szyda J, Strabel T. Parity-dependent association between TNF-α and LTF gene polymorphisms and clinical mastitis in dairy BMC Vet Res. 2013;9:114. doi: 10.1186/1746-6148-9-114
- Zabolewicz T, Barcewicz M, Brym P, Puckowska P, Kamiński S. Association of polymorphism within LTF gene promoter with lactoferrin concentration in milk of Holstein cows. Pol J Vet Sci. 2014;17(4):633‐ doi:10.2478/pjvs-2014-0094
- Zepeda-Batista JL, Saavedra-Jiménez LA, Ruíz-Flores A, Núñez-Domínguez R, Ramírez-Valverde R. Potential influence of κ-casein and β-lactoglobulin genes in genetic association studies of milk quality traits. Asian-Australas J Anim Sci. 2017;30(12):1684‐ doi: 10.5713/ajas.16.0481
- Zhang B, Zhao G, Lan X, Lei C, Zhang C, Chen H. Polymorphism in GHRH gene and its association with growth traits in Chinese native Res Vet Sci. 2012;92(2):243‐246. doi: 10.1016/j.rvsc.2011.01.023
Tarasova Ekaterina Ivanovna, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: ekaterina45828@mail.ru
Notova Svetlana Viktorovna, Dr. Sci (Med.), Professor, First Deputy Director, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: snotova@mail.ru
Received: 21 August 2020; Accepted: 14 September 2020; Published: 30 September 2020
Download