Maria S Miroshnikova

DOI: 10.33284/2658-3135-103-4-174

UDC 636.082.11

Acknowledgements:

The research was carried out with the support of the Russian Science Foundation project (No. 20-16-00088)

The main representatives of the rumen microbiome (review)

Maria S Miroshnikova1,2

1 Orenburg State University (Orenburg, Russia)

2 Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. In connection with such problems as population growth, scarcity of resources and climate change problems, possible development and implementation of livestock technologies that simulate the work of the rumen of ruminants and increase food production, is of particular interest today. For this reason, it is important to have a comprehensive study of species composition and mechanism of commensal interactions of microorganisms in the rumen microbiome of ruminants, depending on various factors. Genome sequencing of these organisms and assembling draft genomes from metagenomic data will bring us closer to completing a comprehensive genome reference collection for the possibility of artificial reproduction of the microbial community. This review is aimed at analyzing the results of the latest metagenomic, metataxonomic and metatranscriptome studies based on next generation sequencing (NGS), affecting various aspects of the rumen microbiome, such as the effect of feed additive or diet on the rumen microbiome, the dependence of the composition of rumen microbiome on host genetics, early signs of young rumen colonization, a variety of enzymes, etc. Fundamental questions regarding the composition of the rumen microbiome, the ability of its communities to assemble during the life of an animal and the predictability of assembly processes are still not resolved. Further research that furthers a deeper understanding of the structure and function of the rumen microbiome will enable us to potentially predict and determine how and when we can interfere with the microbiome assembly process to modulate this ecosystem.

Key words: ruminants, cattle, rumen microbiome composition, bioreactor, sequencing, genetics.

References

  1. Akin DE, Borneman WS. Role of rumen fungi in fiber degradation. J Dairy Sci. 1990;73(10):3023-3032. doi: https://doi.org/10.3168/jds.S0022-0302(90)78989-8
  2. Akin DE, Lyon CE, Windham WR et al. Physical degradation of lignified stem tissues by ruminal fungi. Appl Environ Microbiol. 1989;55(3):611-616. doi: 10.1128/AEM.55.3.611-616.1989
  3. Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome. 2017;5:155. doi: 10.1186/s40168-017-0374-3
  4. Arntzen MØ, Várnai A, Mackie RI et al. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol. 2017;19(7):2701-2714. doi: https://doi.org/10.1111/1462-2920.13770
  5. Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol. 2017;15:83-95. doi: https://doi.org/10.1038/nrmicro.2016.164
  6. Attwood GT, Wakelin SA, Leahy SC et al. Applications of the soil, plant and rumen microbiomes in pastoral agriculture. Front Nutr. 2019;6:107. doi: https://doi.org/10.3389/fnut.2019.00107
  7. Avgustin G, Flint HJ, Whitehead TR. Distribution of xylanase genes and enzymes among strains of Prevotella (Bacteroides) ruminicola from the rumen. FEMS Microbiol Lett. 1992;99(2-3):137-143. doi: https://doi.org/10.1111/j.1574-6968.1992.tb05556.x
  8. Baldwin RL, McLeod KR, Klotz JL et al. Rumen development, intestinal growth  and  hepatic   metabolism   in   the   pre-  and  postweaning    J  Dairy  Sci.  2004;87(S):E55-E65. doi: https://doi.org/10.3168/jds.S0022-0302(04)70061-2
  9. Berg Miller ME, Yeoman CJ, Chia N et al. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ. Microbiol. 2012;14(1):207–227. doi: https://doi.org/10.1111/j.1462-2920.2011.02593.x
  10. Bickhart DM, Weimer PJ. Symposium review: Host–rumen microbe interactions may be leveraged to improve the productivity of dairy cows. Journal of Dairy Science. 2018;101(8):7680-7689. doi: https://doi.org/10.3168/jds.2017-13328
  11. Brulc JM, Antonopoulos DA, Miller MEB et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA. 2009;106(6):1948- doi: https://doi.org/10.1073/pnas.0806191105
  12. Callaghan TM, Podmirseg SM, Hohlweck D et al. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys. 2015;9(34):11-28. doi: 10.3897/mycokeys.9.9032
  13. Cheng KJ, Mccowan RP, Costerton JW. Adherent epithelial bacteria in ruminants and their roles in digestive tract function. The American Journal of Clinical Nutrition. 1979;32(1):139-148. doi: https://doi.org/10.1093/ajcn/32.1.139
  14. Cheng KJ, Wallace RJ. The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux. British Journal of Nutrition. 1979;42(3):553-557. doi: https://doi.org/10.1079/BJN19790147
  15. Creevey CJ, Kelly WJ, Henderson G et al. Determining the culturability of the rumen bacterial microbiome. Microb. Biotechnol. 2014;7(5):467-479. doi: https://doi.org/10.1111/1751-7915.12141
  16. Dagar SS, Kumar S, Griffith GW et al.  A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol. 2015;119(8):731-737. doi: https://doi.org/10.1016/j.funbio.2015.04.005
  17. Dassa B, Borovok I, Ruimy-Israeli V et al. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One. 2014;9(7):e99221. https://doi.org/10.1371/journal.pone.0099221
  18. De Mulder T, Goossens K, Peiren N et al. Exploring the methanogen and bacterial communities of rumen environments: Solid adherent, fluid and epimural. FEMS Microbiology Ecology. 2017;93(3):fiw251 doi: https://doi.org/10.1093/femsec/fiw251
  19. De Smet J, Zimmermann M, Kogadeeva M et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J. 2016;10:1823-1835. doi: https://doi.org/10.1038/ismej.2016.3
  20. Dehority BA. Rumen Microbiology. Nottingham: University Press; 2003:382 p.
  21. Devillard E, Bera-Maillet C, Flint HJ et al. Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose. Biochem J. 2003;373(2):495-503. doi: https://doi.org/10.1042/bj20021784
  22. Devillard E, Newbold CJ, Scott KP et al. A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram-positive bacteria. FEMS Microbiol Lett. 1999;181(1):145-152. doi: https://doi.org/10.1111/j.1574-6968.1999.tb08837.x
  23. Dieho K, van den Bogert B, Henderson G et al. Changes in rumen microbiota composition and in situ degradation kinetics during the dry period and early lactation as affected by rate of increase of concentrate allowance. J Dairy Sci. 2017;100(4):2695-2710. doi: https://doi.org/10.3168/jds.2016-11982
  24. Dinsdale D, Cheng KJ, Wallace RJ et al. Digestion of epithelial tissue of the rumen wall by adherent bacteria in infused and conventionally fed sheep. Applied and Environmental Microbiology. 1980;39(5):1059-1066. doi: 10.1128/AEM.39.5.1059-1066.1980
  25. Emerson EL, Weimer PJ. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl Microbiol Biotechnol. 2017;101(10):4269-4278. doi: https://doi.org/10.1007/s00253-017-8150-7
  26. Fanutti C, Ponyi T, Black GW et al. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem. 1995;270(49):29314-293 doi: 10.1074/jbc.270.49.29314
  27. Findley SD, Mormile MR, Sommer-Hurley A et al. Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases. Appl Environ Microbiol. 2011;77(22):8106-8113. doi: 1128/AEM.05925-11
  28. García JJ, Bartolomé DJ, Posado R et al. Weather conditions and rumen temperature and pH in lidia cattle. J Vet Sci Technol. 2018;9(3):532. doi: 10.4172/2157-7579.1000532
  29. Garcia-Vallve S, Romeu A, Palau J. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol. 2000;17(3):352-361. doi: https://doi.org/10.1093/oxfordjournals.molbev.a026315
  30. Guzman CE, Bereza-Malcolm LT, De Groef B. Presence of selected methanogens, fibrolytic bacteria, and proteobacteria in the gastrointestinal tract of neonatal dairy calves from birth to 72 hours. PLoS One. 2015;10(7):e0133048. doi: https://doi.org/10.1371/journal.pone.0133048
  31. Hartinger T, Gresner N, Südekum KH. Does intra-ruminal nitrogen recycling waste valuable resources? A  review of major players and their manipulation. J Anim Sci Biotechnol. 2018;9:33. doi: https://doi.org/10.1186/s40104-018-0249-x
  32. Henderson G, Cox F, Ganesh S et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567. doi: https://doi.org/10.1038/srep14567
  33. Hess M, Sczyrba A, Egan R et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331(6016):463-467. doi: 10.1126/science.1200387
  34. Hobson PN, Stewart CS, editors. The Rumen Microbial Ecosystem. Netherlands: Springer Science & Business Media; 1997:719 p. doi: 10.1007/978-94-009-1453-7
  35. Howe A, Ringus DL, Williams RJ et al. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J.  2016;10:1217-1227. doi:10.1038/ismej.2015.183
  36. Hristov AN, Oh J, Firkins JL et al. Special topics-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci. 2013;91(11):5045-5069. doi: https://doi.org/10.2527/jas.2013-6583
  37. Hurwitz BL, U'Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol.  2016;31:161-168. doi: 1016/j.mib.2016.04.002
  38. Indikova I, Humphrey TJ, Hilbert F. Survival with a helping hand: campylobacter and microbiota. Front Microbiol. 2015;6:1266. doi: https://doi.org/10.3389/fmicb.2015.01266
  39. Ishler V, Heinrichs AJ, Varga G. From feed to milk: Understanding rumen function. Pennsylvania State University Extension Circular 422. University Park, Pa.: Pennsylvania State University; 1996:27 p.
  40. Israeli-Ruimy V, Bule P, Jindou S et al. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Sci Rep. 2017;7:42355. doi: https://doi.org/10.1038/srep42355
  41. Jami E, Israel A, Kotser A et al. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013;7(6):1069-1079. doi: https://doi.org/10.1038/ismej.2013.2
  42. Jouany JP, Ushida K. The role of protozoa in feed digestion: review. Asian Australas J Anim Sci. 1999;12(1):113-128. doi: https://doi.org/10.5713/ajas.1999.113
  43. Kameshwar AKS, Qin W. Genome wide analysis reveals the extrinsic cellulolytic and biohydrogen generating abilities of neocallimastigomycota fungi. J Genomics. 2018;6:74-87. doi: 7150/jgen.25648
  44. Kamra DN, Pathak NN. Improvement in livestock productivity by use of probiotics: a review. Indian J Anim Sci. 2005;75(1):128-134.
  45. Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol. 2011;76(1):49-63. doi: https://doi.org/10.1111/j.1574-6941.2010.01029.x
  46. Kittelmann S, Naylor GE, Koolaard JP et al. A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One. 2012;7(5):e36866. doi: https://doi.org/10.1371/journal.pone.0036866
  47. Klevenhusen F, Petri RM, Kleefisch MT et al. Changes in fibre-adherent and fluid-associated microbial communities and fermentation profiles in the rumen of cattle fed diets differing in hay quality  and  concentrate    FEMS  Microbiol  Ecol. 2017;93(9):fix100. doi: https://doi.org/10.1093/femsec/fix100
  48. Klieve AV, Swain RA, Nolan JV. Bacteriophages in the Rumen; types present, population size and implications for the efficiency of feed utilisation.  Aust. Soc. Anim. Prod. 1996;21:92-94.
  49. Kong Y, Teather R, Forster R. Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol Ecol. 2010;74(3):612-622. doi: https://doi.org/10.1111/j.1574-6941.2010.00977.x
  50. Krause DO, Denman SE, Mackie RI et al. Opportunities to improve fiber degradation in the rumen:   microbiology,   ecology,   and      FEMS  Microbiol  Rev. 2003;27(5):663-693. doi: https://doi.org/10.1016/S0168-6445(03)00072-X
  51. Krause DO, Nagaraja TG, Wright ADG et al. Board-invited review: rumen microbiology: leading the  way  in  microbial  J Anim Sci. 2013;91(1):331-341. doi: https://doi.org/10.2527/jas.2012-5567
  52. Krizova L, Richter M, Trinacty J et al. The effect of feeding live yeast cultures on ruminal pH and redox potential in dry cows as continuously measured by a new wireless device. Czech J Anim Sci. 2011;56(1):37-45.
  53. Lambie SC et al. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1.  Stand Genomic Sci. 2015;10(1):57. doi: https://doi.org/10.1186/s40793-015-0038-5
  54. Lee SS, Ha JK, Cheng K. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl Environ Microbiol. 2000;66(9):3807-3813. doi:  10.1128/AEM.66.9.3807-3813.2000
  55. Lenski RE. Dynamics of interactions between bacteria and virulent bacteriophage. In: Marshall KC,   Advances  in  Microbial  Ecology.  Boston,  MA: Springer;  1988;10: p. 1-44. doi: https://doi.org/10.1007/978-1-4684-5409-3_1
  56. Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr Comp Biol. 2002;42(2):319-326. doi: https://doi.org/10.1093/icb/42.2.319
  57. Malmuthuge N, Guan LL. Understanding host-microbial interactions in rumen: searching the best  opportunity  for  microbiota    J  Anim  Sci Biotechnol. 2017;8:8. doi: https://doi.org/10.1186/s40104-016-0135-3
  58. Matte A, Forsberg CW, Verrinder Gibbins AM. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and  Fibrobacter  succinogenes    Can J Microbiol. 1992;38(5):370-376. doi: https://doi.org/10.1139/m92-063
  59. McAllister TA, Bae HD, Jones GA et al. Microbial attachment and feed digestion in the rumen. Journal of Animal Science. 1994;72(11):3004-3018. doi: https://doi.org/10.2527/1994.72113004x
  60. McSweeney C, Mackie R. Micro-organisms and ruminant digestion: state of knowledge, trends and future prospects. Background study paper No. 61. Food and Agriculture Organization of the United Nation, Rome, Italy; 2012:62 p.
  61. Mizrahi I. Rumen symbioses. In: Rosenberg E, DeLong EF, Lory S et al., editors. The Prokaryotes: Prokaryotic Biology and Symbiotic Associations. Berlin, Heidelberg: Springer; 2013 p. 533-544. doi: https://doi.org/10.1007/978-3-642-30194-0_1
  62. Mukhopadhya I, Moraïs S, Laverde-Gomez J et al. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ Microbiol. 2018;20(1):324-336. doi: https://doi.org/10.1111/1462-2920.14000
  63. Naas AE, Mackenzie AK, Mravec J et al. Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? mBio. 2014;5(4):e01401-014 doi: 10.1128/mBio.01401-14
  64. Newbold CJ, de la Fuente G, Belanche A et al. The role of ciliate protozoa in the rumen. Front Microbiol. 2015;6:1313. doi: https://doi.org/10.3389/fmicb.2015.01313
  65. Olofsson J, Axelsson-Olsson D, Brudin L et al. Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles. PLoS One. 2013;8(11):e78873. doi: https://doi.org/10.1371/journal.pone.0078873
  66. Parmar NR, Jakhesara SJ, Mohapatra A et al.  Rumen virome: an assessment of viral communities and  their  functions  in  the  rumen  of  an  Indian  Curr. Sci. 2016;111(5):919-925. doi: 10.18520/cs/v111/i5/919-925
  67. Pitta DW, Pinchak WE, Dowd SE et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol. 2010;59(3):511-522. doi: https://doi.org/10.1007/s00248-009-9609-6
  68. Puniya AK, Singh R, Kamra DN, editors. Rumen microbiology: from evolution to revolution. New Delhi: Springer India; 2015:379 p. doi:10.1007/978-81-322-2401-3
  69. Qi M, Wang P, O'Toole N et al. Snapshot of the eukaryotic gene expression in muskoxen rumen  a  metatranscriptomic  PLoS One. 2011;6(5):e20521. doi: https://doi.org/10.1371/journal.pone.0020521
  70. Ricard G, McEwan NR, Dutilh BE et al. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics. 2006:10;7:22. doi: https://doi.org/10.1186/1471-2164-7-22
  71. Rosewarne CP, Pope PB, Cheung J.L et al. Analysis of the bovine rumen microbiome reveals a diversity of Sus-like polysaccharide utilization loci from the bacterial phylum Bacteroidetes. Ind Microbiol Biotechnol. 2014;41(3):601-606. doi: https://doi.org/10.1007/s10295-013-1395-y
  72. Ross EM, Petrovski S, Moate PJ et al. Metagenomics of rumen bacteriophage from thirteen lactating dairy cattle. BMC Microbiol. 2013;13(1):242. doi: https://doi.org/10.1186/1471-2180-13-242
  73. Sahin O, Fitzgerald C, Stroika S et al. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States. J Clin Microbiol. 2012;50(3):680-687. doi: 1128/JCM.06167-11
  74. Santschi DE, Berthiaume R, Matte JJ et al. Fate of supplementary B-vitamins in  the gastrointestinal   tract   of   dairy     J  Dairy  Sci. 2005;88(6):2043-2054. doi: https://doi.org/10.3168/jds.S0022-0302(05)72881-2
  75. Sasson G, Kruger Ben-Shabat S, Seroussi E et al. Heritable bovine rumen bacteria are phylogenetically related and correlated with the cow’s capacity to harvest energy from its feed. mBio. 2017;8(4):e00703-007 doi: 10.1128/mBio.00703-17
  76. Schären M, Kiri K, Riede S et al. Alterations in the rumen liquid-, particle-and epithelium-associated microbiota of dairy cows during the transition from a silage-and concentrate-based ration to pasture in spring. Front. Microbiol. 2017;8:744. doi: https://doi.org/10.3389/fmicb.2017.00744
  77. Seshadri R, Leahy SC, Attwood GT et al. Cultivation and sequencing of rumen microbiome members  from  the  Hungate1000 Collection. Nat Biotechnol. 2018;36(4):359-367. doi: 10.1038/nbt.4110
  78. Sharon A, Creevey CJ, Oyama LB et al. Аddressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol. 2018;9:2161. doi: https://doi.org/10.3389/fmicb.2018.02161
  79. Stewart RD, Auffret MD, Warr A et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen.  Nat Commun. 2018;9(1):870. doi: https://doi.org/10.1038/s41467-018-03317-6
  80. Susmel P, Stefanon B. Aspects of lignin degradation by rumen microorganisms. J Biotechnol. 1993;30(1):141-148. doi: https://doi.org/10.1016/0168-1656(93)90035-L
  81. Thompson LR, Zeng Q, Kelly L et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial   host   carbon     Proc.   Natl.   Acad.  Sci. 2011;108(39):E757-E764. doi: https://doi.org/10.1073/pnas.1102164108
  82. Williams AG, Coleman GS. The rumen protozoa. Brock Springer Series in Contemporary Bioscience. New York: Springer-Verlag; 1992:441 p.
  83. Yeoman CJ, White BA. Gastrointestinal tract microbiota and probiotics in production Annu Rev Anim Biosci. 2014;2:469-486. doi: https://doi.org/10.1146/annurev-animal-022513-114149
  84. Youssef NH, Couger MB, Struchtemeyer CG. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol. 2013;79(15):4620-4634. doi:1128/AEM.00821-13
  85. Ze X, Ben David Y, Laverde-Gomez JA et al. Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii. mBio. 2015;6(5):e01058-15. doi:1128/mBio.01058-15

Miroshnikova Maria Sergeevna, undergraduate, Orenburg State University, 460018, 13 Podedy Ave., Orenburg, Russia; Research Laboratory Assistant, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., сот.: 8-922-867-57-10, e-mail: marymiroshnikova@mail.ru

Received: 24 November 2020; Accepted: 14 December 2020; Published: 31 December 2020

Download