Maria S Miroshnikova

 DOI: 10.33284/2658-3135-104-1-109

UDC 636.085

Acknowledgements:

The research was carried out with the support of the Russian Science Foundation project (No. 20-16-00088)

Segregation of biosubstrates in rumen. Microbial interactions in fiber degradation (review)

Maria S Miroshnikova1,2

1 Orenburg State University (Orenburg, Russia)

2 Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. Ruminal microbiome is an extremely complex mechanism for the decomposition of the fiber biomass structure. It allows ruminants to digest food. Most of the intake food consists of plant fiber and microorganisms involved in its decomposition. So they are essential for the ecology of the microbial rumen community and the state of the host animal. The microbiological processes of rumen digestion have a great impact on the environment. This literature review analyzes the enzymological basis of the plant fiber degradation. It also analyzes the distribution of genes encoding fiber-lyzing microorganisms. The interaction of microbes with other representatives of the rumen microbiota is considered, including the assessment of the combined effect on the community structure. The presented analysis is important for the development of animal science. It allows to develop and create nature-like technologies based on the principles of the ruminant pre-ventricles. The study of these processes will contribute to a better understanding of microbial ecology and the evolution of anaerobic ecosystems.

Key words: cattle, ruminants, rumen microbiota enzymes, glucoside hydrolases, microorganisms interactions, microbial ecosystem, plant biomass.

Литература

  1. Abot A, Arnal G, Auer L et al. CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems. BMC Genomics. 2016;17(1):671. doi: 10.1186/s12864-016-2988-4
  2. Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol. 2017;15(2):83-95. doi: https://doi.org/10.1038/nrmicro.2016.164
  3. Bayer EA, Chanzy H, Lamed R, et. al. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 1998;8(5):548-557. doi: https://doi.org/10.1016/S0959-440X(98)80143-7
  4. Bayer EA, Shoham Y, Lamed R. Lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes.  Berlin, Heidelberg: Springer; 2013. p. 215-266.
  5. Berlemont R, Martiny AC. Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol. 2013;79(5):1545-1554. doi: 10.1128/AEM.03305-12
  6. Borrel G, O'Toole PW, Harris HM et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol. 2013;5(10):1769-1780. doi: https://doi.org/10.1093/gbe/evt128
  7. Bryant MP, Wolin MJ.  Rumen bacteria and their metabolic interactions. In: Hasegawa T., editor. Proceedings of First lntersectional Congress of IAMS; 1974 Sept. 1-7; Developmental Microbial Ecology. Tokyo: Science Council of Japan; 1975. Vol. 2. p. 297-306.
  8. Cazier EA, Trably E, Steyer JP et al. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Bioresour Technol. 2015;190:106-113. doi: https://doi.org/10.1016/j.biortech.2015.04.055
  9. Comtet-Marre S, Chaucheyras-Durand F, Bouzid O et al. FibroChip, a functional dna microarray to monitor cellulolytic and hemicellulolytic activities of rumen microbiota. Front Microbiol. 2018;9:215. doi: https://doi.org/10.3389/fmicb.2018.00215
  10. Dai X, Tian Y, Li J et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol. 2015;81(4):1375-1386. doi: 10.1128/AEM.03682-14
  11. Dehority BA. Rumen Microbiology. Nottingham: Nottingham University Press; 2003:372 р.
  12. Fukuma NM, Koike S, Kobayashi Y. Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria. Arch Microbiol. 2015;197(2):269-276. doi: https://doi.org/10.1007/s00203-014-1049-0
  13. Garcia JL, Patel BK, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe. 2000;6(4):205-226.  doi: https://doi.org/10.1006/anae.2000.0345
  14. Haitjema CH, Gilmore SP, Henske JK et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol. 2017;2:17087. doi: https://doi.org/10.1038/nmicrobiol.2017.87
  15. Henderson G, Cox F, Ganesh S et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567. doi: https://doi.org/10.1038/srep14567
  16. Hess M, Sczyrba A, Egan R et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331(6016):463-467. doi: 10.1126/science.1200387
  17. Himmel ME, Xu Q, Luo Y et al. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels. 2010;1(2):323-341. doi: https://doi.org/10.4155/bfs.09.25
  18. Hobson PN, Stewart CS, editors. The Rumen Microbial Ecosystem. Netherlands: Springer Science & Business Media; 1997:719 p. doi: 10.1007/978-94-009-1453-7
  19. Hook SE, Wright A-DG, McBride BW. Methanogens: methane producers of the rumen and mitigation strategies. Archaea. 2010;2010:945785. doi: 10.1155/2010/945785
  20. Ishler V, Heinrichs AJ, Varga G. From feed to milk: Understanding rumen function. Pennsylvania State University Extension Circular 422. University Park, Pa.: Pennsylvania State University; 1996:27 p.
  21. Jarrell KF, Bayley DP, Correia JD et al. Recent about excitement the archaea: The archaea are valuable for studying basic biological questions and have novel biotechnology applications. BioScience. 1999;49(7):530-541. doi: https://doi.org/10.2307/1313474
  22. Latham MJ, Wolin MJ. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence  of Methanobacterium ruminantium. Appl Environ Microbiol. 1977;34(3):297-301. doi: 10.1128/aem.34.3.297-301.1977
  23. Leahy SC, Kelly WJ, Altermann E et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One. 2010;5(1):e8926. doi: https://doi.org/10.1371/journal.pone.0008926
  24. Levy B, Jami E. Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front Microbiol. 2018;9:2526. doi: https://doi.org/10.3389/fmicb.2018.02526
  25. Lin C, Raskin L, Stahl DA. Microbial community structure in gastrointestinal tracts of domestic animals: comparetive analyses using rRNA-targeted oligonucleotide probes. FEMS Microbiol Ecol. 1997;22(4):281-294. doi: https://doi.org/10.1111/j.1574-6941.1997.tb00380.x
  26. Lombard V, Golaconda Ramulu H, Drula E et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490-495. doi: https://doi.org/10.1093/nar/gkt1178
  27. Marvin-Sikkema FD, Richardson AJ, Stewart CS et al. Influence of hydrogen-consuming bacteria on cellulose  degradation  by anaerobic fungi. Appl Environ Microbiol. 1990;56(12):3793-3797. doi: 10.1128/aem.56.12.3793-3797.1990
  28. Miura H, Horiguchi M, Matsumoto T. Nutritional interdependence among rumen bacteria, bacteroides amylophilus, megasphaera elsdenii, and ruminococcus albus. Appl Environ Microbiol. 1980;40(2):294-300. doi: 10.1128/aem.40.2.294-300.1980
  29. Moraïs S, Mizrahi I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol Rev. 2019;43(4):362-379. doi: 10.1093/femsre/fuz007
  30. Morgavi DP, Martin C, Jouany JP et al. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Br J Nutr. 2012;107(3):388-397. doi: 10.1017/S0007114511002935
  31. Morvan B, Bonnemoy F, Fonty G et al. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr Microbiol. 1996a;(1);32(3):129-133. doi: https://doi.org/10.1007/s002849900023
  32. Morvan B, Rieu-Lesme F, Fonty G et al. In vitroInteractions between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe. 1996b;(2);2(3):175-180. doi: https://doi.org/10.1006/anae.1996.0023
  33. Mountfort DO, Asher RA, Bauchop T. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with methanobrevibacter sp. strain RA1 and methanosarcina barkeri. Appl Environ Microbiol. 1982;44(1):128-134. doi: 10.1128/aem.44.1.128-134.1982
  34. Newbold CJ, de la Fuente G, Belanche A et al. The role of ciliate protozoa in the rumen. Front Microbiol. 2015;6:1313. doi: https://doi.org/10.3389/fmicb.2015.01313
  35. Ng F, Kittelmann S, Patchett ML et al. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ Microbiol. 2016;18(9):3010-3021. doi: https://doi.org/10.1111/1462-2920.13155
  36. Patra A, Park T, Kim M et al. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol. 2017;8(1):13. doi: https://doi.org/10.1186/s40104-017-0145-9
  37. Piao H, Lachman M, Malfatti S et al. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Front Microbiol. 2014;5:307. doi: https://doi.org/10.3389/fmicb.2014.00307
  38. Pollegioni L, Tonin F, Rosini E. Lignin-degrading enzymes. FEBS J. 2015;282(7):1190-213. doi: https://doi.org/10.1111/febs.13224
  39. Rouviere P, Wolfe R. Novel biochemistry of methanogenesis. J Biol Chem. 1988;263(17):7913-7916. doi: https://doi.org/10.1016/S0021-9258(18)68417-0
  40. Russell JB. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl Environ Microbiol. 1985;49(3):572-576. doi: 10.1128/aem.49.3.572-576.1985
  41. Rychlik JL, May T. The effect of a methanogen, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria. Curr Microbiol. 2000;40(3):176-180. doi: https://doi.org/10.1007/s002849910035
  42. Sawanon S, Koike S, Kobayashi Y. Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion. FEMS Microbiol Lett. 2011;325(2):170-179. doi: https://doi.org/10.1111/j.1574-6968.2011.02427.x
  43. Seshadri R, Leahy SC, Attwood GT et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat Biotechnol. 2018;36(4):359-367. doi: 10.1038/nbt.4110
  44. Sirohi SK, Pandey N, Singh B et al.  Rumen methanogens: A review. Indian J Microbiol. 2010;50(3):253-262. doi: https://doi.org/10.1007/s12088-010-0061-6
  45. Stanton TB, Canale-Parola E. Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch Microbiol. 1980;127(2):145-156. doi: https://doi.org/10.1007/BF00428018
  46. Tapio I, Fischer D, Blasco L et al. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS One. 2017;12(7):e0180260. doi: https://doi.org/10.1371/journal.pone.0180260
  47. Williams AG, Withers SE, Joblin KN. The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis by Ruminococcus flavefaciens. Curr Microbiol. 1994;29(3):133-138. doi: https://doi.org/10.1007/BF01570753

Miroshnikova Maria Sergeevna, undergraduate, Orenburg State University, 460018, 13 Podedy Ave., Orenburg, Russia; Research Laboratory Assistant, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., сот.: 8-922-867-57-10, e-mail: marymiroshnikova@mail.ru

Received: 26 February 2021; Accepted: 15 March 2021; Published: 31 March 2021

Download