Alexey N Frolov, Oleg A Zavyalov, Anatoly V Kharlamov, Irina N Sycheva, Irina E Bystrenina

Animal Husbandry and Fodder Production. 2022. Vol. 105, no 1. Р. 62-73.

 doi:10.33284/2658-3135-105-1-62

 Evaluation of productive traits and elemental status in Kalmyk bull-calves of various genotypes

by growth hormone gene

Alexey N Frolov1, Oleg A Zavyalov2, Anatoly V Kharlamov3, Irina N Sycheva4, Irina E Bystrenina5

1,2,3Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

4,5Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia

1forleh@mail.ru, https://orcid.org/0000-0003-4525-2554

2oleg-zavyalov83@mail.ru, https://orcid.org/0000-0003-2033-3956

3 harlamov52@mail.ru, https://orcid.org/0000-0002-9477-6568

4in_sychewa@mail.ru, https://orcid.org/0000-0003-3784-0508

5iesh@rambler.ru, https://orcid.org/0000-0001-5424-691X

Abstract. The article presents an evaluation of productive traits and elemental status in Kalmyk bull-calves of various genotypes of growth hormone gene located on the territory of Orenburg region (Russia).  Blood  samples  were taken (n=100) to determine the polymorphic groups and then the genomic

[1]DNA were isolated using the “DNA-Extran” reagent kit. Polymerase chain reaction was carried out on an ANK-32 amplifier, as a result of genotyping for the growth hormone gene in the herd of Kalmyk bull-calves the genetic frequency of animals with CC genotype was 62.0 %, while CG was 26.0 % and GG was 12.0 %. The study of productive traits showed that since the age of 6 months bull-calves with CC genotype significantly exceeded their peers with the CG and GG genotypes in live weight by 7.0 and 5.0%, at 8 months - 7.4 and 5.7 % and at 14 months - 9.0 and 5.0%, respectively. And they were also superior in measurements: withers and hip height, chest width and depth.

The methods of atomic emission and mass spectrometry were used to determine the content of main and toxic elements in the wool from the withers. The results showed that the concentration of Ca, K, Na, Co, Cr, Cu, J, Se, B, Si, Li, V in the wool from bull-calves with CC genotype were higher compared with CG genotype; and Сa, K, Na, J, Se, B, Li - with GG. An evaluation of the total toxic load of bulls’ organism depending on polymorphism of growth hormone gene was calculated from the sum of mmol of elements Al, Cd, Pb, Sn, Hg, Sr. Animals with CC genotype accumulated less toxic substances by 52.4 and 63.1 % compared with peers with CG and GG genotypes, respectively.

Keywords: cattle, bull-calves, gene, SNP, GH, growth rate, elemental status, Orenburg region

Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2023 FSBRI FRC BST RAS (No. 0761-2019-0006).

For citation: Frolov AN, Zavyalov OA, Kharlamov AV., Sycheva IN, Bystrenina IE. Evaluation of productive traits and elemental status in Kalmyk bull-calves of various genotypes by growth hormone gene. Animal Husbandry and Fodder Production. 2022;105(1):62-73. https://doi.org/10.33284/2658-3135-105-1-62 (In Russ.).

References

  1. Advisory Committee on Childhood Lead Poisoning Prevention of the Centers for Disease Control and Prevention. Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention: Report to the CDCP. USA, GA, Atlanta: ACCLPP; 2012:1-54.
  2. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131(2): 568S-580S. doi: 10.1093/jn/131.2.568S
  3. Boyd RD, Bauman DE. Mechanisms of action for somatotropin in growth. Campion DR, Hausman GJ, Martin RJ, editors. Animal Growth Regulation. MA, Boston: Springer; 1989;257-293. doi: 10.1007/978-1-4684-8872-2_12
  4. 4. Bresciani E, Rizzi L, Coco S, Molteni L, Meanti R, Locatelli V, Torsello A. Growth hormone secretagogues and the regulation of calcium signaling in muscle. Int J Mol Sci. 2019;20(18):4361. doi: 10.3390/ijms20184361
  5. Casas E, White SN, Shackelford SD, Wheeler TL, Koohmaraie M, Bennett GL, Smith TP. Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle. J Anim Sci. 2007;85(11):2807-14. doi: 10.2527/jas.2007-0179
  6. Cheong HS, Yoon DH, Kim LH, Park BL, Choi YH, Chung ER, Cho YM, Park EW, Cheong IC, Oh SJ, Yi SG, Park T, Shin HD. Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle. BMC Genet. 2006;7:35. doi: 10.1186/1471-2156-7-35
  7. Combs DK. Hair analysis as an indicator of mineral status of livestock. J Anim Sci. 1987;65(6):1753-58. doi: 10.2527/jas1987.6561753x
  8. Corpas E, Harman SM, Blackman MR. Human growth hormone and human aging. Endocr Rev. 1993;14(1):20-39. doi: 10.1210/edrv-14-1-20
  9. Djari A, Esquerré D, Weiss B, Martins F, Meersseman C, Boussaha M, et al. Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics. 2013;14:307. doi:10.1186/1471-2164-14-307
  10. Ge W, Davis ME, Hines HC, Irvin KM, Simmen RC. Association of single nucleotide polymorphisms in the growth hormone and growth hormone receptor genes  with  blood  serum  insulin-like growth   factor   I   concentration  and  growth  traits  in  Angus   cattle. J Anim Sci. 2003;81(3):641-8. doi: 10.2527/2003.813641x
  11. Gordon DF, Quick DP, Erwin CR, Donelson JE, Maurer RA. Nucleotide sequence of the bovine growth hormone chromosomal gene. Mol Cell Endocrinol. 1983;33(1):81-95. doi: 10.1016/0303-7207(83)90058-8
  12. Gross R, Nilsson J. Application of heteroduplex analysis for detecting variation within the growth hormone 2  gene  in  Salmo  trutta  L. (brown trout). Heredity (Edinb). 1995;74 (Pt 3):286-95. doi: 10.1038/hdy.1995.42
  13. Hirayama H, Naito A, Fujii T, Sugimoto M, Takedomi T, Moriyasu S, Sakai H, Kageyama S. Effects of genetic background on responses to superovulation in Japanese Black cattle. J Vet Med Sci. 2019;81(3):373-378. doi: 10.1292/jvms.18-0537
  14. Howard T. Evaluation of 54 years of Louisiana bull testing, and SNP affecting growth and performance of yearling bulls on a forage performance bull test. LSU Master's Theses; 2013:2521.
  15. Skalnaya MG, Jaiswal SK, Prakash R, Prakash NT, Grabeklis AR, Zhegalova IV, Zhang F, Guo X, Tinkov AA, Skalny AV. The Level of Toxic Elements in Edible Crops from Seleniferous Area (Punjab, India). Biol Trace Elem Res. 2018;184(2):523-528. doi: 10.1007/s12011-017-1216-7
  16. Kalashnikov V, Zajcev A, Atroshchenko M, Miroshnikov S, Frolov A, Zav'yalov O, Kalinkova L, Kalashnikova T. The content of essential and toxic elements in the hair of the mane of the trotter horses depending on their speed. Environ Sci Pollut Res. 2018;25:21961-21967. doi: 10.1007/s11356-018-2334-2
  17. Katoh K, Kouno S, Okazaki A, Suzuki K, Obara Y. Interaction of GH polymorphism with body weight and endocrine functions in Japanese black calves. Domest Anim Endocrinol. 2008;34(1):25-30. doi: 10.1016/j.domaniend.2006.10.003
  18. Kotyzova D, Cerna P, Leseticky L, Eybl V. Trace elements status in selenium-deficient rats – interaction with cadmium. Biological Trace Element Research. 2010;136(3):287-93. doi: 10.1007/s12011-009-8541-4
  19. Lee JH, Lee YM, Lee JY, Oh DY, Jeong DJ, Kim JJ. Identification of single nucleotide polymorphisms (SNPs) of the bovine growth hormone (bGH) gene associated with growth and carcass traits in Hanwoo. Asian-Australas J Anim Sci. 2013;26(10):1359-64. doi: 10.5713/ajas.2013.13248
  20. Lincoln DT, Sinowatz F, El-Hifnawi E, Hughes RL, Waters M. Evidence of a direct role for growth hormone (GH) in mammary gland proliferation and lactation. Anat Histol Embryol. 1995;24(2):107-115. doi: 10.1111/j.1439-0264.1995.tb00020.x
  21. Lückhoff A, Busse R. Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. Naunyn-Schmiedeberg's Arch Pharmacol. 1990;342:94-99. doi: 10.1007/BF00178979
  22. McCormack BL, Chase CC Jr, Olson TA, Elsasser TH, Hammond AC, Welsh TH Jr, Jiang H, Randel RD, Okamura CA, Lucy MC. A miniature condition in Brahman cattle is associated with a single nucleotide mutation within  the growth hormone gene. Domest Anim Endocrinol. 2009;37(2):104-11. doi: 10.1016/j.domaniend.2009.04.001
  23. Miller WL, Martial JA, Baxter JD. Molecular cloning of DNA complementary to bovine growth hormone mRNA. J Biol Chem. 1980;255(16):7521-7524.
  24. Min LJ, Li MY, Sun GQ, Pan QJ, Chen H. Relationship between polymorphism of growth hormone gene and production traits in goats. Yi Chuan Xue Bao. 2005;32(6):650-4.
  25. Miroshnikov S, Kharlamov A, Zavyalov O, Frolov A, Bolodurina I, Arapova O, Duskaev G. Method of sampling beef cattle hair for assessment of elemental profile. Pakistan Journal of Nutrition. 2015;14(9):632-636. doi: 10.3923/pjn.2015.632.636
  26. Ouni M, Castell AL, Linglart A, Bougnères P. Genetic and epigenetic modulation of growth hormone sensitivity studied with the IGF-1 generation test. J Clin Endocrinol Metab. 2015;100(6):E919-25. doi: 10.1210/jc.2015-1413
  27. Pannier L, Mullen AM, Hamill RM, Stapleton PC, Sweeney T. Association analysis of single nucleotide polymorphisms in DGAT1, TG and FABP4 genes and intramuscular fat in crossbred Bos taurus cattle. Meat Sci. 2010;85(3):515-8. doi: 10.1016/j.meatsci.2010.02.025
  28. Patra RC, Swarup D, Sharma MC, Naresh R. Trace mineral profile in blood and hair from cattle environmentally exposed to lead and cadmiumaround different industrial units. J Vet Med A. 2006;53(10):511-517. doi: 10.1111/j.1439-0442.2006.00868.x
  29. Pavlata L, Chomat M, Pechova A, Misurova L, Dvorak R. Impact of long-term supplementation of zinc and selenium on their content in blood and hair in goats. Veterinarni Medicina. 2011;56:63-74. doi: 10.17221/1581-VETMED
  30. Pereira AP, Alencar MM, Oliveira HN, Almeida Regitano LC. Association of GH and IGF-1 polymorphisms with growth traits in a synthetic beef cattle breed. Genetics and Molecular Biology. 2005;28(2):230-236. doi: 10.1590/S1415-47572005000200009
  31. Pieper L, Wall K, Müller E, Roder A, Staufenbiel R. Evaluation of sulfur status in dairy cows in Germany. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2016;44(2):92-8. doi: 10.15653/TPG-150901
  32. Ro Y, Choi W, Kim H, Jang H, Lee H, Lee Y, Kim D. Prepubertal growth and single nucleotide polymorphism analysis of the growth hormone gene of low birth weight Holstein calves. J Vet Sci. 2018;19(1):157-160. doi: 10.4142/jvs.2018.19.1.157
  33. Ronis MJ, Badger TM, Shema SJ, Roberson PK, Shaikh F. Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol. 1996;136(2):361-371. doi: 10.1006/taap.1996.0044
  34. Schenkel FS, Miller SP, Wilton JW. Genetic parameters and breed differences for feed efficiency, growth and  body  composition  traits  of  young  beef bulls. Can J Anim Sci. 2004;84(2):177-184. doi: 10.4141/A03-085
  35. Sellier P. Genetically caused retarded growth in animals. Domest Anim Endocrinol. 2000;19(2):105-19. doi: 10.1016/s0739-7240(00)00071-0
  36. Sexson JL, Wagner JJ, Engle TE, Spears JW. Effects of water  quality  and  dietary potassium  on  performance  and  carcass  characteristics  of  yearling steers. J Anim Sci. 2010;88(1):296-305. doi: 10.2527/jas.2009-1899
  37. Sumantran VN, Tsai ML, Schwartz J. Growth hormone induces  c-fos  and  c-jun  expression in  cells  with  varying  requirements  for  differentiation. Endocrinology. 1992;130(4):2016-2024. doi: 10.1210/endo.130.4.1547725
  38. Tian C, Yang M, Lv L, Yuan Y, Liang X, Guo W, Song Y, Zhao C. Single nucleotide polymorphisms in growth hormone gene and their association with growth traits in Siniperca chuatsi (Basilewsky). Int J Mol Sci. 2014;15(4):7029-36. doi: 10.3390/ijms15047029
  39. Tian YG, Yue M, Gu Y, Gu WW, Wang YJ. Single-nucleotide polymorphism analysis of GH, GHR, and IGF-1 genes in minipigs. Braz J Med Biol Res. 2014;47(9):753-8. doi: 10.1590/1414-431x20143945

Information about the authors:

Alexey N Frolov, Dr. Sci. (Biology), Acting Head of Department of Technology for Beef Cattle Breeding and Beef Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-78.

Oleg A Zavyalov, Dr. Sci. (Biology), Leading Researcher, Department of Technology of Beef Cattle Breeding and Beef Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-78.

Anatoly V Kharlamov, Dr. Sci. (Agriculture), Professor, Chief Researcher, Department of Technology for Beef Cattle Breeding and Beef Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-78.

Irina N Sycheva, Cand. Sci. (Agriculture), Associate Professor of the Department of Perticular Zootechnics, Russian State Agrarian University - Moscow Agricultural Academy named after K.A. Timiryazev; 127434, Russia, Moscow, st. Timiryazevskaya, 49, tel.: 879263948919.

Irina E Bystrenina, Cand. Sci (Pedagogical), Associate Professor of the Department of Applied Informatics, Russian State Agrarian University - Moscow Agricultural Academy named after K.A. Timiryazev; 127434, Russia, Moscow, st. Timiryazevskaya, 49, tel.: 89057146125.

The article was submitted 25.02.2022; approved after reviewing 04.03.2022; accepted for publication 21.03.2022.

Download