Olga V Bogdanova, Antonina A Novikova

Animal Husbandry and Fodder Production. 2022. Vol. 105, no 1. Р. 139-158.

doi:10.33284/2658-3135-105-1-139

Review of empirical and current breeding techniques to improve barley (Hordeum vulgare) (rewiew)

 Olga V Bogdanova1, Antonina A Novikova2

1Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1olga_bogdanova_1995@mail.ru, https://orcid.org/0000-0002-6837-9905

2tony-novikova@yandex.ru, https://orcid.org/0000-0002-6947-9262

 Abstract. The review article discusses the achievements of traditional breeding, and the state, development and application of new breeding tools and technologies using genetic methods in order to improve the breeding characteristics of barley. The results currently available in the study of the molecular mechanisms of barley resistance to stress factors and improvement of its economically valuable characteristics are described. Based on the analysis of literary sources, the resources of germplasm for barley breeding, genomic tools and resources for improving its quality have been studied. The article also discusses high-performance phenotyping and polyploid selection of barley.

 Keywords: barley, germplasm, selection, molecular markers, genetics, PCR, DNA, polyploid selection, phenotyping

Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2030 FSBRI FRC BST RAS (No. 0526-2022-0015).[1]

For citation: Bogdanova OV, Novikova AA. Review of empirical and current breeding techniques to improve barley (hordeum vulgare) (review). Animal Husbandry and Fodder Production. 2022;105(1):139-158. (In Russ.). https://doi.org/10.33284/2658-3135-105-1-139

References

  1. Abarova EE. Techniques for increasing the yield and grain quality of fodder barley varieties in the north-eastern region of Belarus. [dissertation] Zhodino; 2009: 158 p.
  2. Alabushev AV. Problems and prospects of the grain industry in Russia. Rostov n/a: CJSC "Kniga"; 2004: 288 p.
  3. Zhuchenko AA. Adaptive plant breeding system (environmental and genetic foundations): monograph in 2 volumes. Moscow: RUND. 2001;2:780 p
  4. Kalko GV. The DNA markers for exploring of genetic resources of spruce and pine. Proceedings of the St. Petersburg Research Institute of Forestry. 2015;4:19-34.
  5. Loskutov IG. The history of the world collection of plant genetic resources in Russia. St. Petersburg: GNTs RF VIR; 2009:294 p.
  6. Vislobokova LN et al. Sustainable development support of agricultural production in Central Black Earth zone in drought conditions. Grain Economy of Russia. 2011;1:46-51.
  7. Omasheva ME, Aubakirova KP, Ryabushkina NA. Molecular markers. Causes and consequences of genotyping errors. Biotechnology. Theory and Practice. 2013;4:20-28.
  8. Glukhovtsev VV, Tsarevsky SYu, Mukhtulova AS, Stolpivskaya EV. Creation of varieties of spring barley for the conditions of the Middle Volga region (Conference proceedings) Increasing the yield and quality of grain, fodder and industrial crops: materials of the conference, (Samara, July 26-28, 2004). Samara: Volga Research Institute of Breeding and Seed Production Konstantinov PN;2005:77-82.
  9. Taranukho GI. Selection and seed production of agricultural crops: a textbook for students of higher agricultural institutions with agronomic specialties. Minsk: Information Center of the Ministry of Finance;2009:420 p.
  10. Filippenko SV. Possibility of evaluating barley varieties in terms of ecological plasticity and stability in conditions of one geographical point. Agriculture and selection in Belarus: collection of articles. scientific works. Minsk; 2008;44:273-280.
  11. Khlestkina EK. Molecular markers in genetic studies and breeding. Vavilov Journal of Genetics and Breeding. 2013;17(4-2):1044-1054.
  12. Shevtsov VM. Barley breeding in the North Caucasus: Ph.D. dis. ... Dr. Agr. Sciences. Nemchinovka; 1982. 35 p.
  13. Akbari M et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theoretical and Applied Genetics. 2006;113(8):1409-1420. doi: 10.1007/s00122-006-0365-4
  14. Akladious SA, Abbas SM. Inter simple sequence repeat (ISSR) markers and some physiological attributes of barley genotypes to drought and potassium nutrition. Life Science Journal. 2020;17(9):84-98. doi: 10.7537/marslsj170920.10
  15. Arabi MIE et al. Identification of AFLP markers associated with spot blotch resistance through single marker analysis in barley (Hordeum vulgare L.). Cereal Research Communications. 2021;49(2):285-290. doi: 10.1007/s42976-020-00109-x
  16. Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science. 2014;19(1):52-61. doi: 10.1016/j.tplants.2013.09.008
  17. Badr A, et al. On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution. 2000;17(4):499-510. doi: 10.1093/oxfordjournals.molbev.a026330
  18. Bardakci F. Random amplified polymorphic DNA (RAPD) markers. Turkish Journal of Biology. 2001;25(2):185-196.
  19. Bespalova LA, et al. Photoperiod sensitivity and molecular marking of genes Ppd and Vrn in connection with breeding alternative-habit wheat varieties. Russian Agricultural Sciences. 2010;36(6):389-392. doi: 10.3103/S1068367410060017
  20. Blake VC, et al. The Hordeum toolbox: the barley coordinated agricultural project genotype and phenotype resource. The Plant Genome. 2012;5(2):81-91. doi: 10.3835/plantgenome2012.03.0002
  21. Blattner FR. Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). New Phytologist. 2006;169(3):603-614. doi: 10.1111/j.1469-8137.2005.01610.x
  22. Brassac J, Jakob SS, Blattner FR. Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region. PloS ONE. 2012;7(3):e33808. doi: 10.1371/journal.pone.0033808
  23. Cregan PB et al. Length polymorphisms of simple sequence repeat (SSR) DNA as molecular markers in plants. In: Gresshoff PM, editor. Plant Genome Analysis (1st ed.). Boca Raton, Fla.: CRC Press; 1994:47-57. doi: 10.1201/9781003068907
  24. Dido AA et al. Spatial and temporal genetic variation in Ethiopian barley (Hordeum vulgare L.) landraces as revealed by simple sequence repeat (SSR) markers. Agriculture & Food Security. 2021;10(1):1-14. doi: 10.1186/s40066-021-00336-3
  25. FAO. The second report on the state of the world's plant genetic resources for food and agriculture. Rome; 2010:396 p.
  26. Feuillet C, Langridge P, Waugh R. Cereal breeding takes a walk on the wild side. Trends in Genetics. 2008;24(1);24-32. doi: 10.1016/j.tig.2007.11.001
  27. Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol. 2013;64:267-91. doi: 10.1146/annurev-arplant-050312-120137
  28. Genesys. [Internet] Available from: https://www.genesys-pgr.org/a/map/v2k2a7V3BxK/@19.826969,-1.433500,2z - (accessed 17.02.2022).
  29. Gouesnard B et al. MSTRAT: An algorithm for building germ plasm core collections by maximizing allelic or phenotypic richness. Journal of Heredity. 2001;92(1):93-94. doi: 10.1093/jhered/92.1.93
  30. Heubl G. DNA-based authentication of TCM-plants: current progress and future perspectives. In: Wagner H, Ulrich-Merzenich G, editors. Evidence and rational based research on Chinese drugs. Vienna: Springer; 2013:27-85. doi: 10.1007/978-3-7091-0442-2_2
  31. Knüpffer H. Triticeae genetic resources in ex situ genebank collections.  Muehlbauer G, Feuillet C, editors. Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models. New York, NY: Springer; 2009;7:31-79. doi: 10.1007/978-0-387-77489-3_2
  32. Kolmer JA. Physiologic specialization of Puccinia triticina in Canada in 1998. Plant disease. 2001;85(2):155-158. doi: 10.1094/PDIS.2001.85.2.155
  33. Komatsuda T, Salomon B, von Bothmer R. Evolutionary process of Hordeum brachyantherum 6x and related tetraploid species revealed by nuclear DNA sequences. Breeding Science. 2009;59(5):611-616. doi: 10.1270/jsbbs.59.611
  34. Kurth J et al. A high-resolution genetic map and a diagnostic RFLP marker for the Mlg resistance locus to  powdery  mildew  in  barley. Theoretical and Applied Genetics. 2001;102(1):53-60. doi: 10.1007/s001220051617
  35. Latif S et al. Effect of bacillus subtilis on some physiological and biochemical processes in barley (Hordeum vulgare L.) Plant grown under salt stress. Egyptian Journal of Botany. 2021;61(1):141-153. doi: 10.21608/EJBO.2020.41931.1555
  36. Lei X et al. RNA-seq analysis of oil palm under cold stress reveals a different C-repeat binding factor (CBF) mediated gene expression pattern in Elaeis guineensis compared to other species. PloS ONE. 2014;(12):e114482. doi: 10.1371/journal.pone.0114482
  37. Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14(11):20078-20111. doi: 10.3390/s141120078
  38. Matese A et al. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sensing. 2015;7(3):2971-2990. doi: 10.3390/rs70302971
  39. Miflin B. Crop improvement in the 21st century. Journal of Experimental Botany. 2000;51(342):1-8. doi: 10.1093/jexbot/51.342.1
  40. Nevo E. Evolution of wild barley and barley improvement. In: Zhang G, Li C, Liu X, editors. Advance in barley sciences. Dordrecht: Springer; 2013:1-23. doi: 10.1007/978-94-007-4682-4_1
  41. Olivera PD, Kilian A, Wenzl P, Steffenson BJ. Development of a genetic linkage map for Sharon goatgrass (Aegilops sharonensis) and mapping of a leaf rust resistance gene. Genome. 2013;56(7):367-76. doi: 10.1139/gen-2013-0065
  42. Pasam RK et al. Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates. PLoS ONE. 2014;9(12):e116164. doi: 10.1371/journal.pone.0116164
  43. Petersen G, Seberg O. On the origin of the tetraploid species Hordeum capense and H. secalinum (Poaceae). Systematic Botany. 2004;29(4):862-873. doi: 10.1600/0363644042451080
  44. Russell GE. Plant breeding for pest and disease resistance: studies in the agricultural and food sciences. Butterworth -Heinemann; 2013:496 р. doi: 10.1016/C2013-0-06283-4
  45. Salamini F et al. Genetics and geography of wild cereal domestication in the near east. Nature Reviews Genetics. 2002;3(6):429-441. doi: 10.1038/nrg817
  46. Sang T, Pan J, Zhang D, Ferguson D, Wang C, Pan K-Y, Hong D-Y. Origins of polyploids: an example from peonies  (Paeonia) and a model for angiosperms. Biol J Linn Soc. 2004;82(4):561-571. doi: 10.1111/j.1095-8312.2004.00341.x
  47. Sato K. History and future perspectives of barley genomics. DNA Research. 2020;27(4):dsaa023. doi: 10.1093/dnares/dsaa023
  48. Small RL, Cronn RC, Wendel JF. Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany. 2004;17(2):145-170. doi: 10.1071/SB03015
  49. Tabassum J, Suman L. Single nucleotide polymorphism (SNP)–methods and applications in plant genetics: a review. Indian Journal of Biotechnology. 2006;5(4):435-459.
  50. Taketa S et al. Ancestry of American polyploid Hordeum species with the I genome inferred from 5S and 18S-25S rDNA. Annals of Botany. 2005;96(1):23-33. doi: 10.1093/aob/mci147
  51. Teulat B et al. QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theoretical and Applied Genetics. 2003;108(1):181-188. doi: 10.1007/s00122-003-1417-7
  52. Thabet SG et al. Genetic associations uncover candidate SNP markers and genes associated with salt tolerance during seedling developmental phase in barley. Environmental and Experimental Botany. 2021;188:104499. doi: 10.1016/j.envexpbot.2021.104499
  53. Ullrich SE. Significance, adaptation, production and trade of barley. In: Ullrich SE, editor. Barley: production, improvement and uses. USA, IA, Ames: Wiley-Blackwell; 2011:3-13. doi: 10.1002/9780470958636.ch1
  54. 54. von Bothmer R et al. The domestication of cultivated barley. In: von Bothmer R, van Hintum Th, Knüpffer H, Sato K, editors. Diversity in barley (Hordeum vulgare). Amsterdam, The Netherlands: Elsevier Science BV; 2003:9-27. doi: 1016/S0168-7972(03)80004-X
  55. Weiss-Schneeweiss H et al. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenetic and Genome Research. 2013;140(2-4):137-150. doi: 10.1159/000351727
  56. White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball BA, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang G. Field-based phenomics for plant genetics research. Field Crops Research. 2012;133:101-112. doi: 10.1016/j.fcr.2012.04.003
  57. Wood TE et al. The frequency of polyploid speciation in vascular plants. Proceedings of the national academy of sciences. 2009;106:33:13875-13879. doi: 10.1073/pnas.0811575106

Information about authors:

Olga V Bogdanova, post-graduate student, laboratory researcher, Laboratory of Selection and Genetic Research in Crop Production, Federal  Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460051, Orenburg, Gagarin Ave., 27/1, tel.: 89878716655

Antonina A Novikova, Cand. Sci. (Agriculture), Leading Researcher, Head of the Laboratory of Selection and Genetic Research in Crop Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 27/1 Gagarin Ave., Orenburg, 460051, tel.: 89228884481

The article was submitted 11.01.2022; approved after reviewing 01.03.2022; accepted for publication 21.03.2022.

Download