Alexander A Neverov
Animal Husbandry and Fodder Production. 2022. Vol. 105, no 1. Р. 159-170.
doi:10.33284/2658-3135-105-1-159
Stimulating role of trace elements at the stage of germination of barley seeds
Alexander A Neverov1
1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
1nevalex2008@yandex.ru, https://orcid.org/0000-0001-5467-2476
Abstract. Trace elements play a central role in maintaining plant metabolism, increasing stress resistance and disease resistance. The effect of seed treatment with aqueous solutions of sulfuric acid salts of various metals and concentrations on the growth and development of barley seedlings was studied in laboratory conditions. Seed treatment leads to different results depending on the metal and the concentration of the solution. Fe++, Mg++, Zn++ ions in a concentration of 1% aqueous solution of metal sulfate increase the germination of barley seeds by 5-7%. The same ions have a significant positive effect on the growth and development of the root system and barley sprouts. Iron Fe has the greatest positive effect on all indicators. Cu++ ions in 1% salt concentration stimulate only the growth and accelerated development of sprouts. In a concentration of 0.1-1.0% aqueous solution Mn is phytotoxic for barley seedlings.
Keywords: barley, seeds, sulfates, iron, magnesium, zinc, manganese, copper
Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2030 FSBRI FRC BST RAS (No. 0526-2022-0014).
For citation: Neverov АА. Stimulating role of trace elements at the stage of germination of barley seeds. Animal Husbandry and Fodder Production. 2022;105(1):159-170. (In Russ.). https://doi.org/10.33284/2658-3135-105-1-159[1]
References
- Neverov AA. The stimulating effect of magnesium sulfate at the stage of seed germination of agricultural crops. Izvestia of Orenburg State Agrarian University. 2021;1(87):74-78. doi: 10.37670/2073-0853-2021-87-1-74-78
- Shelud'ko AN, Chervonenko DV. Effect of manganese salt of various concentrations on the growth processes of wheat. Bulletin of Medical Internet Conferences. 2016;6(5):669.
- Aciksoz BS, Yazicici A, Ozturk L, Cakmak I. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil. 2011;349:215-225. doi: 10.1007/s11104-011-0863-2
- Barunawati N, Giehl RFH, Bauer B, von Wiren N. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat. Front Plant Sci. 2013;4:320. doi: 10.3389/fpls.2013.00320
- Bouain N, Kisko M, Rouached A, Dauzat M, Lacombe B, Belgaroui N, et al. (2014). Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport. Biomed Res Int. 2014;2014:548254. doi: 10.1155/2014/548254
- Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil. 2008;302:1-17. doi: 10.1007/s11104-007-9466-3
- Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, et al. Biofortification and localization of zinc in wheat grain. J Agric Food Chem. 2010;58(16):9092-9102. doi: 10.1021/jf101197h
- Ceylan Y, Kutman UB, Mengutay M, Cakmak I. Magnesium applications to growth medium and foliage affect the starch distribution, increase the grain size and improve the seed germination in wheat. Plant Soil. 2016;406:145-156. doi: 10.1007/s11104-016-2871-8
- Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants. Cell Mol Life Sci. 2008;65:1150-1160. doi: 10.1007/s00018-007-7473-4
- Farooq M, Wahid A, Siddique KHM. Micronutrient application through seed treatments - a review. J Soil Sci Plant Nutr.2012;12(1):125-142. doi: 10.4067/S0718-95162012000100011
- Graham RD, Webb MJ. Micronutrients and disease resistance and tolerance in plants. In: Mortvedt JJ, editor. Micronutrients in Agriculture. 2018;4(10):329-370. doi: 10.2136/sssabookser4.2ed.c10
- Grotz N, Guerinot ML. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta Mol Cell Res. 2006;1763(7):595-608. doi: 10.1016/j.bbamcr.2006.05.014
- Guerinot ML. Microbial iron transport. Annu Rev Microbiol. 1994;48:743-72. doi: 10.1146/annurev.mi.48.100194.003523
- Guo X, Ma X, Zhang J et al. Meta-analysis of the role of zinc in coordinating absorption of mineral elements in wheat seedlings. Plant Methods. 2021;17(1):105. doi: 10.1186/s13007-021-00805-7
- Hajiboland R. Effect of micronutrient deficiencies on plants stress responses. Ahmad P, Prasad MNV, editor. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. New York, NY: Springer; 2012:283-329. doi: 10.1007/978-1-4614-0634-1_16
- Heine G, Max JF, Führs H, Moran-Puente DW, Heintz D, Horst WJ. Effect of manganese on the resistance of tomato to Pseudocercospora fuligena. J Plant Nutr Soil Sci. 2011;174(5):827-836. doi: 10.1002/jpln.201000440
- Ishimaru Y, Bashir K, Nishizawa NK. Zn uptake and translocation in rice plants. Rice. 2011;4:21-27. doi: 10.1007/s12284-011-9061-3
- Khan G.A, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, et al. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot. 2014;65(3):871-884. doi: 10.1093/jxb/ert444
- Kobayashi NI, Tanoi K. Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants. Int J Mol Sci. 2015;16(9):23076-23093. doi: 10.3390/ijms160923076
- Krämer U, Clemens S. Functions and homeostasis of zinc, copper, and nickel in plants. In: Tamas MJ, Martinoia E, editors. Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics. Berlin, Heidelberg: Springer. 2005;14:215-271. doi: 10.1007/4735_96
- Kutman UB, Yildiz B, Cakmak I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J Cereal Sci. 2011a;53:118-125. doi: 10.1016/j.jcs.2010.10.006
- Kutman UB, Yildiz B, Cakmak I. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil. 2011b;342:149-164. doi: 10.1007/s11104-010-0679-5
- Lidon FC, Barreiro MG, Ramalho JC. Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol. 2004;161(11):1235-1244. doi: 10.1016/j.jplph.2004.02.003
- Nishio JN, Abadía J, Terry N. Chlorophyll-proteins and electron transport during iron nutrition-mediated chloroplast development. Plant Physiol. 1985;78(2):296-299. doi: 10.1104/pp.78.2.296
- Ova EA, Kutman UB, Ozturk L, Cakmak I. High phosphorus supply reduced zinc concentration of wheat innative soil but not in autoclaved soil or nutrient solution. Plant Soil. 2015;393:147-162. doi: 10.1007/s11104-015-2483-8
- Rou GR, Sahoo S. Role of iron in plant growth and metabolism. Rev Agric Sci. 2015;3:1-24. doi: 10.7831/ras.3.1
- Satbhai SB, Setzer C, Freynschlag F, Slovak R, Kerdaffrec E, Busch W. Natural allelic variation of FRO2 modulates Arabidopsis root growth under iron deficiency. Nat Commun. 2017;8:15603. doi: 10.1038/ncomms15603
- Shahzad Z, Amtmann A. Food for thought: how nutrients regulate root system architecture. Curr Opin Plant Biol. 2017;39:80-87. doi: 10.1016/j.pbi.2017.06.008
- Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Römheld V, Zou C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci. 2010;51(1):165-170. doi: 10.1016/j.jcs.2009.11.008
- Shingles R, Wimmers LE, McCarty RE. Copper transport across pea thylakoid membranes. Plant Physiol. 2004;135(1):145-151. doi: 10.1104/pp.103.037895
- Smiri M., Missaoui T. The role of ferredoxin: thioredoxin reductase / thioredoxin m in seed germination and the connection between this system and copper ion toxicity. Journal of Plant Physiology. 2014;171(17):1664-1670. doi: 10.1016/j.jplph.2014.06.019
- Zhang B, Cakmak I, Feng J, et al. Magnesium deficiency reduced the yield and seed germination in wax gourd by affecting the carbohydrate translocation. Front Plant Sci. 2020;11:797. doi: 10.3389/fpls.2020.00797
- Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, et al. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 2009;151(1):262-274. doi: 10.1104/pp.109.141051
Information about the authors:
Alexander A Neverov, Cand. Sci. (Agriculture), Researcher of the Department of Technologies of Grain and Fodder Crops, Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 27/1 Gagarin Ave., Orenburg, 460051, tel.: 8-919-861-84-18.
The article was submitted 11.01.2022; approved after reviewing 07.02.2022; accepted for publication 21.03.2022.