Maria S Arinzhanova
Animal Husbandry and Fodder Production. 2022. Vol. 105, no 2. Р. 70-83.
doi:10.33284/2658-3135-105-2-70
Analysis of the technology improvement for the preservation of rumen liquids. Artificial rumens of ruminant (review)
Maria S Arinzhanova1
1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
1marymiroshnikova@mail.ru, https://orcid.org/0000-0003-1898-9307
Abstract. Studies looking at feed digestion, effects of feed additives, or rumen fermentation often require the determination of terminal products fermentation and nutrient flow using cannulae placed in the abomasum or duodenum. Currently, alternative methods are justified that can accurately simulate the rumen work. Creating a “perfect” artificial rumen that maintains and reproduces the original microbial community in rumen of ruminant animal could be an advanced nature-like technology that allows animal scientists to simplify and speed up the research process. An analysis was made of the improvement of the technology for preserving rumen fluid due to the comparative characteristics of the performance, configuration and effectiveness of earlier and more modern models of artificial rumen fermenters.
Keywords: rumen, artificial rumen, artificial bio-systems, bioreactor, rumen fermenter, in vitro, nature-like technologies
Acknowledgments: the work was supported by the Russian Science Foundation, Project No. 20-16-00088.
For citation: Arinzhanova MS. Analysis of the technology improvement for the preservation of rumen liquids. Artificial rumens of ruminant (review). Animal Husbandry and Fodder Production. 2022;105(2):70-83. (In Russ.). https://doi.org/10.33284/2658-3135-105-2-70
References
- Abe M, Kurihara Y. Long-term cultivation of certain rumen protozoa in a continuous fermentation system supplemented with sponge materials. Journal of Applied Bacteriology. 1984;56(2):201-213. doi: 10.1111/j.1365-2672.1984.tb01340.x
- Alende M, Lascano GJ, Jenkins TC, Koch LE, Volpi-Lagreca G, Andrae JG. Technical note: comparison of 4 methods for determining in vitro ruminal digestibility of annual ryegrass. Prof Anim Sci. 2018;34(3):306-309. doi: 10.15232/pas.2017-01688
- Amaral PM, Mariz LDS, Benedeti PDB, Silva LG, Paula EM, Monteiro HF, Shenkoru T, Santos SA, Poulson SR, Faciola AP. Effects of static or oscillating dietary crude protein levels on fermentation dynamics of beef cattle diets using a dual-flow continuous culture system. PLoS One. 2016;11(12):e0169170. doi: 10.1371/journal.pone.0169170
- Belanche A, Jones E, Parveen I, Newbold CJ. A metagenomics approach to evaluate the impact of dietary supplementation with Ascophyllum nodosum or Laminaria digitata on rumen function in rusitec fermenters. Front Microbiol. 2016a;7:299. doi: 10.3389/fmicb.2016.00299
- Belanche A, Kingston-Smith AH, Newbold CJ. An integrated multi-omics approach reveals the effects of supplementing grass or grass hay with vitamin E on the rumen microbiome and its function. Front Microbiol. 2016b;7:905. doi: 10.3389/fmicb.2016.00905
- Belanche A, Pinloche E, Preskett D, Newbold CJ. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol. 2016с;92(1):fiv160. doi: 10.1093/femsec/fiv160
- Brandao VLN, Silva LG, Paula EM, Monteiro HF, Dai X, Lelis ALJ, Faccenda A, Poulson SR, Faciola AP. Effects of replacing canola meal with solvent-extracted camelina meal on microbial fermentation in a dual-flow continuous culture system. J Dairy Sci. 2018;101:9028-9040. doi: 10.3168/jds.2018-14826
- Broudiscou LP, Papon Y, Fabre M, Broudiscou AF. Maintenance of rumen protozoa populations in a dual outflow continuous fermenter. Journal of the Science of Food and Agriculture. 1997;75(3):273-280. doi: 10.1002/(SICI)1097-0010(199711)75:3<273::AID-JSFA876>3.0.CO;2-8
- Calsamiglia S, Ferret A, Devant M. Effects of pH and pH fluctuations on microbial fermentation and nutrient flow from a dual-flow continuous culture system. J Dairy Sci. 2002;85(3):574-579. doi: 10.3168/jds.S0022-0302(02)74111-8
- Cantalapiedra-Hijar G, Yáñez-Ruiz DR, Newbold CJ, Molina-Alcaide E. The effect of the feed-to-buffer ratio on bacterial diversity and ruminal fermentation in single-flow continuous-culture fermenters. J Dairy Sci. 2011;94(3):1374-1384. doi: 10.3168/jds.2010-3260
- Cardozo PW, Calsamiglia S, Ferret A, Kamel C. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J Anim Sci. 2004;82(11):3230-3236. doi: 10.2527/2004.82113230x
- Carro MD, Ranilla MJ, Martín-García AI, Molina-Alcaide E. Comparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen. Animal. 2009;3(4):527-534. doi: 10.1017/S1751731108003844
- Coleman GS. Rumen ciliate protozoa. In: Lumsden WHR, Muller R, Baker JR, editors. Advances in Parasitology. London New, York, Toronto, Sydney, San Francisco: Academic Press. 1980;18:121-173.
- Czerkawski JW, Breckenridge G. Design and development of a long-term rumen simulation technique (Rusitec). Br J Nutr. 1977;38(3):371-384. doi: 10.1079/bjn19770102
- Dai X, Paula EM, Lelis ALJ, Silva LG, Brandao VLN, Monteiro HF, Fan P, Poulson SR, Jeong KC, Faciola AP. Effects of lipopolysaccharide dosing on bacterial community composition and fermentation in a dual-flow continuous culture system. J Dairy Sci. 2019;102(1):334-350. doi: 10.3168/jds.2018-14807
- Dann HM, Ballard CS, Grant RJ, Cotanch KW, Carter MP, Suekawa M. Effects of glutamate on microbial efficiency and metabolism in continuous culture of ruminal contents and on performance of mid-lactation dairy cows. Anim Feed Sci Technol. 2006;130(3-4):204-224. doi: 10.1016/j.anifeedsci.2006.01.009
- Devant M, Ferret A, Calsamiglia S, Casals R, Gasa J. Effect of nitrogen source in high-concentrate, low-protein beef cattle diets on microbial fermentation studied in vivo and in vitro. J Anim Sci. 2001;79(7):1944-1953. doi: 10.2527/2001.7971944x
- Dillard SL, Roca-Fernández AI, Rubano MD, Soder KJ. Evaluation of a single-flow continuous culture fermenter system for determination of ruminal fermentation and enteric methane production. Journal of Animal Physiology and Animal Nutrition. 2019;103(5):1313-1324. doi: 10.1111/jpn.13155
- Duarte AC, Holman DB, Alexander TW, Durmic Z, Vercoe PE, Chaves AV. The type of forage substrate preparation included as substrate in a RUSITEC system affects the ruminal microbiota and fermentation characteristics. Front Microbiol. 2017;8:704. doi: 10.3389/fmicb.2017.00704
- Ertl P, Knaus W, Metzler-Zebeli BU, Klevenhusen F, Khiaosa-Ard R, Zebeli Q. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro. J Dairy Sci. 2015;98(7):4762-4771. doi: 10.3168/jds.2014-9063
- Fuchigami M, Senshu T, Horiguchi M. A simple continuous culture system for rumen microbial digestion study and effects of defaunation and dilution rates. Journal of Dairy Science. 1989;72(11):3070-3078. doi: 10.3168/jds.S0022-0302(89)79460-1
- Giraldo LA, Ranilla MJ, Tejido ML, Carro MD. Influence of exogenous fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation in Rusitec fermenters. Br J Nutr. 2007;98(4):753-761. doi: 10.1017/S0007114507744446
- Hillman K, Williams AG, Lloyd D. Evaluation of matrices in the rumen simulation technique (RUSITEC) for the maintenance of ciliate protozoa. Lett Appl Microbiol. 1991;12(4):129-132. doi: 10.1111/j.1472-765X.1991.tb00522.x
- Hino T, Sugiyama M, Okumura K. Maintenance of protozoa and methanogens, and fiber digestion in rumen-simulating continuous culture. The Journal of General and Applied Microbiology. 1993;39(1):35-45. doi: 10.2323/jgam.39.35
- Hoover WH, Crooker BA, Sniffen CJ. Effects of differential solid–liquid removal rates on protozoa numbers in continuous culture of rumen contents. J Anim Sci. 1976;43(2):528-534.
- Hristov AN, Lee C, Hristova R, Huhtanen P, Firkins JL. A meta-analysis of variability in continuous-culture ruminal fermentation and digestibility data. J Dairy Sci. 2012;95(9):5299-5307. doi: 10.3168/jds.2012-5533
- Hungate RE. The Rumen and its Microbes. New York, London: Academic Press; 1966:533 p.
- Jin D, Zhao S, Wang P, Zheng N, Bu D, Beckers Y, Wang J. Insights into abundant rumen ureolytic bacterial community using rumen simulation system. Front Microbiol. 2016;7:1006. doi: 10.3389/fmicb.2016.01006
- Karnati SKR, Sylvester JT, Ribeiro CVDM, Gilligan LE, Firkins JL. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis J Dairy Sci. 2009;92(8):3849-3860. doi: 10.3168/jds.2008-1436
- Lengowski MB, Zuber KH, Witzig M, Mohring J, Boguhn J, Rodehutscord M. Changes in rumen microbial community composition during adaption to an in-vitro system and the impact of different forages. PLoS One. 2016;11(2):e0150115. doi: 10.1371/journal.pone.0150115
- López S. In vitro and in situ techniques for estimating digestibility. In: Dijkstra J, Forbes JM, France J, editors. Quantitative aspects of ruminant digestion and metabolism. UK, Wallingford: CABI Publishing. 2005;4:87. doi:10.1079/9780851998145.0087
- Mansfield HR, Endres MI, Stern MD. Comparison of microbial fermentation in the rumen of dairy cows and dual flow continuous culture. Anim Feed Sci Technol. 1995;55(1-2):47-66. doi: 10.1016/0377-8401(95)98202-8
- Martínez ME, Ranilla MJ, Tejido ML, Ramos S, Carro MD. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth. J Dairy Sci. 2010;93(8):3684-3698. doi: 10.3168/jds.2009-2933
- Mason F, Zanfi C, Spanghero M. Testing a stratified continuous rumen fermenter system. Animal Feed Science and Technology. 2015;201:104-109. doi: 10.1016/j.anifeedsci.2015.01.008
- Mateos I, Ranilla MJ, Saro C, Carro MD. Comparison of fermentation characteristics and bacterial diversity in the rumen of sheep and in batch cultures of rumen microorganisms. J Agric Sci. 2015;153(6):1097-1106. doi: 10.1017/S0021859615000167
- Merry RJ, Smith RH, McAllan AB. Studies of rumen function in an in vitro continuous culture system. Archives of Animal Nutrition. 1987;37(6):475-488. doi: 10.1080/17450398709421063
- Molina-Alcaide E, Pascual MR, Cantalapiedra-Hijar G, Morales-García EY, Martín-García AI. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters. J Anim Sci. 2009;87(4):1321-1333. doi: 10.2527/jas.2008-1263
- Moumen A, Yáñez-Ruiz DR, Carro MD, Molina-Alcaide E. Protozoa evolution in single-flow continuous culture and Rusitec fermenters fed high-forage diets. In: Papachristou TG, Parissi ZM, Ben Salem H, Morand-Fehr P, editors. Nutritional and foraging ecology of sheep and goats. Zaragoza: CIHEAM/FAO/NAGREF. 2009;85:303-308.
- Muetzel S, Lawrence P, Hoffmann EM, Becker K. Evaluation of a stratified continuous rumen incubation system. Anim Feed Sci Technol. 2009;151(1-2):32-43. doi: 10.1016/j.anifeedsci.2008.11.001
- Prevot S, Senaud J, Bohatier J, Prensier G. Variation in the composition of the ruminal bacterial microflora during the adaptation phase in an artificial fermenter (RUSITEC). Zool Sci. 1994;11(6):871-882.
- Shen W, Jiang Y, Wang J, Bu D, Shi H. Design and testing of rumen simulation system with discharging solid chime, liquid, and gas respectively. T Chinese Soc Agri Eng. 2012;28(3):20-26.
- Slyter LL, Nelson WO, Wolin MJ. Modifications of a device for maintenance of the rumen microbial population in continuous culture. Аpplied Microbiology. 1964;12(4):374-377. doi: 10.1128/am.12.4.374-377.1964
- Sniffen CJ, Ballard CS, Carter MP, Cotanch KW, Danna HM, Grant RJ, Mandebvu P, Suekawa M, Martin SA. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Anim Feed Sci Technol. 2006;127(1-2):13-31. doi: 10.1016/j.anifeedsci.2005.07.006
- Soto EC, Molina-Alcaide E, Khelil H, Yáñez-Ruiz DR. Ruminal microbiota developing in different in vitro simulation systems inoculated with goats’ rumen liquor. Anim Feed Sci Technol. 2013;185(1-2):9-18. doi: 10.1016/j.anifeedsci.2013.06.003
- Stewart DG, Warner RG, Seeley HW. Continuous culture as a method for studying rumen fermentation. Applied Microbiology. 1961;9(2):150-156. doi: 10.1128/am.9.2.150-156.1961
- Teather RM, Sauer FD. A naturally compartmented rumen simulation system for the continuous culture of rumen bacteria and protozoa. J Dairy Sci. 1988;71(3):666-673. doi: 10.3168/jds.S0022-0302(88)79605-8
- Warner ACI. Criteria for establishing the validity of in vitro studies with rumen microorganisms in so-called artificial rumen systems. J Gen Microbiol. 1956;14:733-748.
- Weller RA, Pilgrim AF. Passage of protozoa and volatile fatty acids from the rumen of a sheep and from a continuous in vitro fermentation system. Br J Nutr. 1974;32(2):341-351.
- Williams AG. Rumen holotrich ciliate protozoa. Microbiol Rev. 1986;50(1):25-49. doi: 10.1128/mr.50.1.25-49.1986
- Ziemer CJ, Sharp R, Stern MD, Cotta MA, Whitehead TR, Stahl DA. Comparison of microbial populations in model and natural rumens using 16S ribosomal RNA-targeted probes. Environ Microbiol. 2000;2(6):632-643. doi: 10.1046/j.1462-2920.2000.00146.x
Information about the authors:
Maria S Arinzhanova, 1st year postgraduate student, Junior Researcher of Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 89228675710.
The article was submitted 13.04.2022; approved after reviewing 17.05.2022; accepted for publication 14.06.2022.
©Аринжанова М.С., 2022
Download