Azamat E Arinzhanov

Animal Husbandry and Fodder Production. 2022. Vol. 105, no 4. Р. 21-34.

doi:10.33284/2658-3135-105-4-21

 Original article

Effect of ultrafine particles of Cu-Zn alloy and probiotic strain Bacillus subtilis on the elemental status of sterlet

Azamat E Arinzhanov1

1Orenburg State University, Orenburg, Russia

1arin.azamat@mail.ru, https://orcid.org/0000-0001-6534-7118

 Abstract. The paper presents the results of studies of the effect of ultrafine particles (UFP) of the Cu-Zn alloy and the probiotic strain Bacillus subtilis on the elemental status of the sterlet (Acipenser ruthenus). It has been found that the Bacillus subtilis inclusion in the diet is accompanied by an increase in[1] calcium by 131% (P≤0.05), phosphorus by 74% (P≤0.05), iron by 28% (P≤0.05), boron 100% (Р≤0.05), manganese 50.8% (Р≤0.05), nickel 95% (Р≤0.05), vanadium 100% (Р≤0.05), cobalt by 100% (Р≤0.05) and lithium by 133% (Р≤0.01) in muscle tissue, against the background of a decrease in the concentration of copper by 36% (Р≤0.05) and chromium by 33% (Р≤0.05), relative to control values. An increase was found in the concentration of potassium by 52% (P≤0.05), magnesium by 54.6% (P≤0.05), phosphorus by 130% (P≤0.001), calcium by 234% (Р≤0.01), silicon by 50.3% (Р≤0.05), zinc by 58% (Р≤0.05), copper by 24% (Р≤0.05), boron by 200% (Р≤0.01), manganese by 219% (Р≤0.001), nickel by 230% (Р≤0.001), cobalt by 100% (Р≤0.05), vanadium by 200% (Р≤0 .01) and lithium by 266% (Р≤0.001), relative to the control values, when UFP of Cu-Zn alloy was included in the diet of fish. We stated an increase in the level of potassium by 46% (P≤0.05), magnesium by 54.2% (P≤0.05), phosphorus by 126.7% (P≤0.001), calcium by 220% (Р≤0.01), boron by 42.3% (Р≤0.05), manganese by 139.3% (Р≤0.01), nickel by 155% (Р≤ 0.01), vanadium by 100% (P≤0.05), cobalt by 100% (P≤0.05) and lithium by 66.6% (P≤0.05), relative to the control values, with the joint introduction of Cu-Zn UFP and Bacillus subtilis into the diet. In the course of research, the ability of the studied additives to reduce the concentration of toxic elements such as aluminum, arsenic and mercury was established.

Keywords: fish, feeding, trace elements, Bacillus subtilis, copper, zinc

For citation: Arinzhanov AE. Effect of ultrafine particles of Cu-Zn alloy and probiotic strain Bacillus subtilis on the elemental status of sterlet. Animal Husbandry and Fodder Production. 2022;105(4):21-34. (In Russ.). https://doi.org/10.33284/2658-3135-105-4-21

References

  1. Arinzhanova МS. Ultrafine preparations of trace metals: experience of use and prospects for use in aquaculture (review). Animal Husbandry and Fodder Production. 2022;105(1):8-30. doi: 10.33284/2658-3135-105-1-8
  2. Miroshnikova EP, Rusakova EA, Kwan OV, Rakhmatullin ShG. The effect of a complex of ultrafine metal microelements and a probiotic preparation on metabolism and interior peculiarities of broiler chickens. Animal Husbandry and Fodder Production. 2020;103(1):33-46. doi: 10.33284/2658-3135-103-1-33
  3. Kvan OV, Sheyda EV, Duskaev GK, Rakhmatullin ShG. Effect of the probiotic strain Bifidobacterium longum on the content of chemical elements in biological tissues of broiler chickens with a mineral-deficient diet. Agrarian Bulletin of the Urals. 2020;S14:28-34. doi: 10.32417/1997-4868-2021-14-28-34
  4. Miroshnikova EP, Arinzhanov AE, Kilyakova YV, Zueva MS. Assessment of the elemental status of carp grown on a diet with the inclusion of probiotic preparations. Technologies for the Food and Processing Industry of AIC – Healthy Food. 2022;1:83-88.
  5. Abd El-Hack ME, El-Saadony MT, Shafi ME, Qattan SYA, Batiha GE, Khafaga AF, Abdel-Moneim AE, Alagawany M. Probiotics in poultry feed: A comprehensive review. J Anim Physiol Anim Nutr (Berl). 2020;104(6):1835-1850. doi: 10.1111/jpn.13454
  6. Abdollahi M, Rezaei J, Fazaeli H. Performance, rumen fermentation, blood minerals, leukocyte and antioxidant capacity of young Holstein calves receiving high-surface ZnO instead of common ZnO. Arch Anim Nutr. 2020;74(3):189-205. doi: 10.1080/1745039X.2019.1690389
  7. Abedini M, Shariatmadari F, Torshizi MAK, Ahmadi H. Effects of zinc oxide nanoparticles on performance, egg quality, tissue zinc content, bone parameters, and antioxidative status in laying hens. Biol Trace Elem Res. 2018;184(1):259-267. doi: 10.1007/s12011-017-1180-2
  8. Alotaibi BS, Khan M, Shamim S. Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms. 2021;9(8):1628. doi: 10.3390/microorganisms9081628
  9. Arinzhanov AE, Miroshnikova EP, Kilyakova YV. Effect of different doses of trace element antagonist nanopreparations (Fe and Co) on fish elemental status. Trace Elements and Electrolytes. 2021;38(3):135-136.
  10. Bąkowski M, Kiczorowska B, Samolińska W, Klebaniuk R, Lipiec A. Silver and zinc nanoparticles in animal nutrition – a review. Ann Anim Sci. 2018;18(4):879-898. doi:10.2478/aoas-2018-0029
  11. Callaway TR, Lillehoj H, Chuanchuen R, Gay CG. Alternatives to antibiotics: a symposium on the challenges  and  solutions for animal health and production. Antibiotics (Basel). 2021;10(5):471. doi: 10.3390/antibiotics10050471
  12. Cholewińska E, Ognik K, Fotschki B, Zduńczyk Z, Juśkiewicz J. Comparison of the  effect of  dietary  copper  nanoparticles  and  one  copper  (II)  salt  on  the  copper  biodistribution  and  gastrointestinal  and  hepatic  morphology  and  function  in  a  rat  model. PLoS One. 2018;13(5):e0197083. doi: 10.1371/journal.pone.0197083
  13. Dawood MAO, Alagawany M, Sewilam H. The role of zinc microelement in aquaculture: a review. Biol Trace Elem Res. 2022;200(8):3841-3853. doi: 10.1007/s12011-021-02958-x
  14. Dawood MAO, Basuini MFE, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MKA, Ahmed HA, Alagawany M, Gewaily MS. Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants (Basel). 2021;10(9):1364. doi: 10.3390/antiox10091364
  15. Dawood MAO. dietary copper requirements for aquatic animals: a review. Biol Trace Elem Res. 2022;200(12):5273-5282. doi: 10.1007/s12011-021-03079-1
  16. Denet E, Espina-Benitez MB, Pitault I, Pollet T, Blaha D, Bolzinger MA, Rodriguez-Nava V, Briançon S. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds. Int J Pharm. 2020;583:119373. doi: 10.1016/j.ijpharm.2020.119373
  17. Di J, Chu Z, Zhang S, Huang J, Du H, Wei Q. Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. Fish Shellfish Immunol. 2019;93:711-719. doi: 10.1016/j.fsi.2019.08.020
  18. Duffy LL, Osmond-McLeod MJ, Judy J, King T. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control. 2018;92:293-300. doi: 10.1016/j.foodcont.2018.05.008
  19. El-Saadony MT, Alagawany M, Patra AK, Kar I, Tiwari R, Dawood MAO, Dhama K, Abdel-Latif HMR. The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol. 2021a;117:36-52. doi: 10.1016/j.fsi.2021.07.007
  20. El-Saadony MT, Saad AM, Taha TF, Najjar AA, Zabermawi NM, Nader MM, AbuQamar SF, El-Tarabily KA, Salama A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J Biol Sci. 2021b;28(12):6782-6794. doi: 10.1016/j.sjbs.2021.07.059
  21. Falcón García C, Kretschmer  M,  Lozano-Andrade CN,  Schönleitner  M,  Dragoŝ A, Kovács ÁT, Lieleg O. Metal ions weaken the hydrophobicity and antibiotic resistance of Bacillus subtilis NCIB 3610 biofilms. npj Biofilms Microbiomes. 2020;6:1. doi: 10.1038/s41522-019-0111-8
  22. Fisinin VI, Miroshnikov SА, Sizova ЕА, Ushakov АS, Miroshnikova ЕP. Metal particles as trace-element sources: current state and future prospects. World's Poultry Science Journal. 2018;74(3):523-540. doi:10.1017/S0043933918000491
  23. González-Palacios C, Fregeneda-Grandes JM, Aller-Gancedo JM. Possible mechanisms of action of two pseudomonas fluorescens isolates as probiotics on saprolegniosis control in rainbow trout (Oncorhynchus mykiss Walbaum). Animals (Basel). 2020;10(9):1507. doi: 10.3390/ani10091507
  24. Hassan S, Hassan FU, Rehman MS. Nano-particles of trace minerals in poultry nutrition: potential applications and future prospects. Biol Trace Elem Res. 2020;195(2):591-612. doi: 10.1007/s12011-019-01862-9
  25. Hidayat C, Sumiati S, Jayanegara A, Wina E. Supplementation of dietary nano Zn-phytogenic on performance, antioxidant activity, and population of intestinal pathogenic bacteria in broiler chicken. Trop Anim Sci J. 2021;44(1):90-99. doi: 10.5398/tasj.2021.44.1.90
  26. Hoseinifar SH, Sun YZ, Wang A, Zhou Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol. 2018;9:2429. doi: 10.3389/fmicb.2018.02429
  27. Ianni A, Innosa D, Martino C, Grotta L, Bennato F, Martino G. Zinc supplementation of Friesian cows: Effect on chemical-nutritional composition and aromatic profile of dairy products. J Dairy Sci. 2019;102(4):2918-2927. doi: 10.3168/jds.2018-15868
  28. Kvan OV, Gavrish IA, Lebedev SV,  Korotkova AM, Miroshnikova EP, Serdaeva VA, Bykov AV, Davydova NO. Effect of probiotics on the basis of Bacillus subtilis and Bifidobacterium longum on the biochemical parameters of the animal organism. Environ Sci Pollut Res Int. 2018;25(3):2175-2183. doi: 10.1007/s11356-017-0534-9
  29. Lee J, Hosseindoust A, Kim M, Kim K, Choi Y, Lee S, Lee S, Cho H, Kang WS, Chae B. Biological evaluation of hot-melt extruded nano-selenium and the role of selenium on the expression profiles of selenium-dependent antioxidant enzymes in chickens. Biol Trace Elem Res. 2020;194(2):536-544. doi: 10.1007/s12011-019-01801-8
  30. Liu H, Li J, Guo X, Liang Y, Wang W. Yeast culture dietary supplementation modulates gut microbiota, growth and biochemical parameters of grass carp. Microb Biotechnol. 2018;11(3):551-565. doi: 10.1111/1751-7915.13261
  31. Malyar RМ, Li H, Enayatullah H,  Hou L, Ahmad Farid R, Liu D, Akhter Bhat J, Miao J, Gan F, Huang K, Chen X. Zinc-enriched probiotics enhanced growth performance, antioxidant status, immune function, gene expression, and morphological characteristics of Wistar rats raised under high ambient temperature. 3 Biotech. 2019;9(8):291. doi: 10.1007/s13205-019-1819-0
  32. Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Emran TB, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q. 2022;42(1):68-94. doi: 10.1080/01652176.2022.2073399
  33. Mingmongkolchai S, Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol. 2018;124(6):1334-1346. doi: 10.1111/jam.13690
  34. Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol. 2019;10:57. doi: 10.1186/s40104-019-0368-z53
  35. Morsy EA, Hussien AM, Ibrahim MA, Farroh KY, Hassanen EI. Cytotoxicity and genotoxicity of copper oxide nanoparticles in chickens. Biol Trace Elem Res. 2021;199(12):4731-4745. doi: 10.1007/s12011-021-02595-4
  36. Nowacka-Woszuk J. Nutrigenomics in livestock-recent advances. J Appl Genet. 2020;61(1):93-103. doi: 10.1007/s13353-019-00522-x
  37. Olmos J, Acosta M, Mendoza G, Pitones V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol. 2020;202(3):427-435. doi: 10.1007/s00203-019-01757-2
  38. Paruthiyil S, Pinochet-Barros A, Huang X, Helmann JD. Bacillus subtilis TerC family proteins help prevent manganese intoxication. J Bacteriol. 2020;202(2):e00624-19. doi: 10.1128/JB.00624-19
  39. Patra A, Lalhriatpuii M. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding-a review. Biol Trace Elem Res. 2020;197(1):233-253. doi: 10.1007/s12011-019-01959-1
  40. Pi H, Wendel BM, Helmann JD. Dysregulation of magnesium transport protects Bacillus subtilis against manganese and cobalt intoxication. J Bacteriol. 2020;202(7):e00711-19. doi: 10.1128/JB.00711-19
  41. Ramiah SK, Awad EA, Mookiah S, Idrus Z. Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult Sci. 2019;98(9):3828-3838. doi: 10.3382/ps/pez093
  42. Ramlucken U, Ramchuran SO, Moonsamy G, Lalloo R, Thantsha MS, Jansen van Rensburg C. A novel Bacillus based multi-strain probiotic improves growth performance and intestinal properties of Clostridium perfringens challenged broilers. Poult Sci. 2020;99(1):331-341. doi: 10.3382/ps/pez496
  43. Reczyńska D, Witek B, Jarczak J, Czopowicz M, Mickiewicz M, Kaba J, Zwierzchowski L, Bagnicka E. The impact of organic vs. inorganic selenium on dairy goat productivity and expression of selected genes in milk somatic cells. J Dairy Res. 2019;86(1):48-54. doi: 10.1017/S0022029919000037
  44. Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, Song SK. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Appl Microbiol. 2020;129(1):116-136. doi: 10.1111/jam.14628
  45. Schmidt MG, Attaway HH, Fairey SE, Howard J, Mohr D, Craig S. Self-disinfecting copper beds sustain terminal cleaning and disinfection effects throughout patient care. Appl Environ Microbiol. 2019;86(1):e01886-19. doi: 10.1128/AEM.01886-19
  46. Sizova Е, Miroshnikov S, Lebedev S, Usha B, Shabunin S. Use of nanoscale metals in poultry diet as a mineral feed additive. Anim Nutr. 2020;6(2):185-191. doi: 10.1016/j.aninu.2019.11.007
  47. Skrypnik K, Suliburska J. Association between the gut microbiota and mineral metabolism. J Sci Food Agric. 2018;98(7):2449-2460. doi: 10.1002/jsfa.8724
  48. Sumon MAA, Sumon TA, Hussain MA, Lee SJ, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Single and multi-strain probiotics supplementation in commercially prominent finfish aquaculture: review of the current knowledge. J Microbiol Biotechnol. 2022;3(6):681-698. doi: 10.4014/jmb.2202.02032
  49. Swart E, Dvorak J, Hernádi S, Goodall T, Kille P, Spurgeon D, Svendsen C, Prochazkova P. The effects of in vivo exposure to copper oxide nanoparticles on the gut microbiome, host immunity, and susceptibility to a bacterial infection in earthworms. Nanomaterials (Basel). 2020;10(7):1337. doi: 10.3390/nano10071337
  50. Utembe W, Tlotleng N, Kamng'ona AW. A systematic review on the effects of nanomaterials on gut microbiota. Curr Res Microb Sci. 2022;3:100118. doi: 10.1016/j.crmicr.2022.100118
  51. Xu J, Cotruvo JA Jr. Iron-responsive riboswitches. Curr Opin Chem Biol. 2022;68:102135. doi: 10.1016/j.cbpa.2022.102135
  52. Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med. 2019;7(1):78-93. doi: 10.1080/23144599.2019.1691379

Information about the authors:

Azamat E Arinzhanov, Cand. Sci. (Agriculture), Associate Professor, Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-922-806-33-43.

The article was submitted 07.11.2022; approved after reviewing 18.11.2022; accepted for publication 12.12.2022.

Download