Ayna M Kamirova, Elena A Sizova, Daniil E Shoshin, Evgeny A Vlasov

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 1. Р. 35-47.

 

doi:10.33284/2658-3135-106-1-35

   

Original article

Effects of Mn2O3 and Co3O4 on bacterial luminescence and dry matter digestibility (in vitro)

 

Ayna M Kamirova1, Elena A Sizova2,3, Daniil E Shoshin4, Evgeny A Vlasov5

1,2,4,5Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

3Orenburg State University, Orenburg, Russia

1ayna.makaeva@mail.ru, https://orcid.org/0000-0003-1474-8223

2,3sizova-l78@ya.ru, https://orcid.org/0000-0002-5125-5981

4daniilshoshin@mail.ru, https://orcid.org/0000-0003-3086-681X

5x-bocx1999@yandex.ru

 

Abstract. Ultrafine particles (UFP), filling the need of animals for mineral elements, increase productivity, improve the microbial profile and immune status, and also reduce the risk of developing various pathologies. At the moment, detailed studies are relevant in order to confirm the safety of use of metal-containing UFPs in animal feeding, preventing the possibility of a negative impact on the productive qualities and physiological state of the latter, and on the environment, including humans. The aim of this study was to determine the effect of Mn2O3 and Co3O4 on bacterial luminescence and feed digestibility in vitro. The article studies the luminescence intensity of a recombinant strain of Echerichia coli K12 TG1 of the natural marine microorganism Photobacterium leiongnathi with cloned luxCDABE genes when exposed to a series of concentrations (0.25-0.00024 M) of ultrafine particles Mn2O3 and Co3O4. The conducted studies show the presence of bactericidal properties of UDP. At the same time, the effective concentrations suppressing 80, 50 and 20% of luminescence for Mn2O3 are 1.2×10-1; 7.8×10-3 and 1.9×10-3 M. Similarly, for Co3O4 - 3.1× 10-2; 3.9×10-3 and 9.8×10-4 M. Minimum inhibitory doses in the range up to 3.9×10-3 are recommended for in vitro and in situ studies.

Keywords: calves, Kazakh white-headed breed, feeding, manganese, cobalt, ultrafine particles, ruminal fluid, digestibility

Acknowledgments:  the  work  was  supported  by  the  Russian  Science  Foundation,  Project  No. 22-26-00254.

For citation: Kamirova AM, Sizova EA, Shoshin DE, Vlasov EA. Effects of Mn2O3 and Co3O4 on bacterial luminescence and dry matter digestibility (in vitro). Animal Husbandry and Fodder Production. 2023;106(1):35-47. (In Russ.). https://doi.org/10.33284/2658-3135-106-1-35

 

References

 
  1. Miroshnikov SA, Lebedev SV, JAusheva EV, Sizova EA. Poultry feed: pat. 2577907 Rus. Federation. Filing 11.11.2014; Publ. 20.03.2016, Bull. Number 8.
  2. Miroshnikov SA, Sizova EA, Manina VA, Yausheva EV, Rogachev BG. Method for increasing the productivity of broiler chickens by intramuscular injection of lysools of iron and copper nanoforms in a mixture with a stabilized electrochemically activated aqueous solution of catholyte: pat. 2658391 Rus. Federation. Filing 31.05.2017; Publ. 21.06.2018, Bull. Number 18.
  3. Miroshnikov SA, Yausheva EV, Sizova EA, Rogachev BG. Method of increasing essential elements in body of broiler chickens in single muscular injection of highly dispersed nanoparticles of copper: pat. 261171 Rus. Federation. Filing 08.12.2015; Publ. 28.02.2017, Bull. Number 7.
  4. Sizova EA, Miroshnikov SA, Poljakova VS, Glushchenko NN. Method for assessing copper nanoparticles administration safety: pat. 2477485 Rus. Federation. Filing 17.05.2011; Publ. 10.03.2013, Bull. Number 33.
  5. Abdollahi M, Rezaei J, Fazaeli H. Performance, rumen fermentation, blood minerals, leukocyte and antioxidant capacity of young Holstein calves receiving high-surface ZnO instead of common ZnO. Arch Anim Nutr. 2020;74(3):189-205. doi: 10.1080/1745039X.2019.1690389
  6. Ates M, Demir V, Arslan Z, Camas M, Celik F. Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater. Water, Air, & Soil Pollution. 2016;227(3):70. doi: 10.1007/s11270-016-2771-9
  7. Bąkowski M, Kiczorowska B, Samolińska W, Klebaniuk R, Lipiec A. Silver and zinc nanoparticles in animal nutrition – a review. Ann Anim Sci. 2018;18(4):879-898. doi: 10.2478/aoas2018-0029
  8. Bao GA, Wang A. The role and application of cobalt in ruminant production. Feed Rev. 2004; 4:31-2.
  9. Bunglavan SJ, Garg AK, Dass RS, Shrivastava S. Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest Res Int. 2014;2(3):36-47.
  10. Chattopadhyay S, Dash SK, Tripathy S, Das B, Mandal D, Pramanik P, Roy. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chemico-biological interactions. 2015;226:58-71. doi: 10.1016/j.cbi.2014.11.016
  11. Cypriyana PJJ, Saigeetha S, Samrot AV, Ponniah P, Chakravarthi S. Overview on toxicity of nanoparticles, it's mechanism, models used in toxicity studies and disposal methods – A review. Biocatalysis and Agricultural Biotechnology. 2021;36:102117. doi: 10.1016/j.bcab.2021.102117
  12. Dawood MAO, Basuini MFE, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MKA, Ahmed HA, Alagawany M, Gewaily MS. Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants. 2021;10(9):1364. doi: 10.3390/antiox10091364
  13. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering. 2014;44:278-284. doi: 10.1016/j.msec.2014.08.031
  14. El Ashry GM, Hassan AAM, Soliman SM. Effect of feeding a combination of zinc, manganese and copper methionine chelates of early lactation high producing dairy cow. Food & Nutrition Sciences. 2012;3(8):1084-1091. doi: 10.4236/fns.2012.38144
  15. El Sabry MI, McMillin KW, Sabliov CM. Nanotechnology considerations for poultry and livestock production systems - a review. Annals of Animal Science. 2018;18(2):319-334. doi: 10.1515/aoas-2017-0047
  16. El-Maddawy ZK, El-sawy AEF, Ashoura NR, Aboelenin SM, Soliman MM, Ellakany HF, Elbestawy AR, El-Shall NA. Use of zinc oxide nanoparticles as anticoccidial agents in broiler chickens along with its impact on growth performance, antioxidant status, and hematobiochemical profile. Life. 2022;12(1):74. doi: 10.3390/life12010074
  17. Eryavuz A, Dehority BA. Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Anim Feed Sci Tech. 2009;151(3-4):175-183. doi: 10.1016/j.anifeedsci.2009.01.008
  18. Genther ON, Hansen SL. The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. J Dairy Sci. 2015;98(1): 566-573. doi: 10.3168/jds.2014-8624
  19. Hidayat C, Sumiati S, Jayanegara A, Wina E. Supplementation of dietary nano Zn-phytogenic on performance, antioxidant activity, and population of intestinal pathogenic bacteria in broiler chicken. Trop Anim Sci J. 2021;44(1):90-99. doi: 10.5398/tasj.2021.44.1.90
  20. Hidiroglou M. Trace clement dificiencies and fertility in ruminants: A review. Journal of Dairy Science. 1979;62(8):1195-1206. doi: 10.3168/jds.S0022-0302(79)83400-1
  21. Huang YW, Cambre M, Lee HJ. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. International Journal of Molecular Sciences. 2017;18(12):2702. doi: 10.3390/ijms18122702
  22. Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S. Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2020;48(3):1260-1275. doi: 10.15835/nbha48311766
  23. Kobayashi M, Shimizu S. Cobalt proteins. European Journal of Biochemistry. 1999;261(1):1-9. doi: 10.1046/j.1432-1327.1999.00186.x
  24. Kojouri G, Arbabi F, Mohebbi A. The effects of selenium nanoparticles (SeNPs) on oxidant and antioxidant activities and neonatal lamb weight gain pattern. Comp Clin Pathol. 2020;29(2):369-374. doi: 10.1007/s00580-019-03061-3
  25. Liu HHZ, Ma MW, Yan N, Lou W, Li HFC. Cobalt on meat rabbit growth performance, immunity and biochemical index of research. Feed Res. 2010; 3:536.
  26. Matuszewski A, Łukasiewicz M, Niemiec J. Calcium and phosphorus and their nanoparticle forms in poultry nutrition. World's Poult Sci J. 2020;76(2):328-345. doi: 10.1080/00439339.2020.1746221
  27. Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition. 2010;10(4): 476-494. doi: 10.4067/S0718-95162010000200008
  28. Morsy EA, Hussien AM, Ibrahim MA, Farroh KY, Hassanen EI. Cytotoxicity and genotoxicity of copper oxide nanoparticles in chickens. Biol Trace Elem Res. 2021;199(12):4731-4745. doi: 10.1007/s12011-021-02595-4
  29. Ouyang Z, Ren P, Zheng D, Huang L, Wei T, Yang C, Kong X, Yin Y, He S, He Q. Hydrothermal synthesis of a new porous zinc oxide and its antimicrobial evaluation in weanling piglets. Livestock Sci. 2021;248:104499. doi: 10.1016/j.livsci.2021.104499
  30. Raje K, Ojha S, Mishra A, Munde VK, Rawat C, Chaudhary SK. Impact of supplementation of mineral nano particles on growth performance and health status of animals: A review. J Entomol Zool Stud. 2018;6(3):1690-1694.
  31. Szuba-Trznadel A, Rząsa A, Hikawczuk T, Fuchs B. Effect of zinc source and level on growth performance and zinc status of weaned piglets. Animals. 2021; 11(7):2030. doi: 10.3390/ani11072030
  32. Tiwari SP, Mishra UK, Jain RK, Mishra OP, Rajagopal S. Effect of supplementation of micronutrients (mineral capsule) on super ovulation and embryo transfer in Sahiwal cows (Bos indicus). The Indian Journal of Animal Sciences. 1999; 69(8):634-636.
  33. Vijayakumar MP, Balakrishnan V. Effect of calcium phosphate nanoparticles supplementation on growth performance of broiler chicken. Indian Journal of Science and Technology. 2014;7(8):1149-1154. doi: 10.17485/ijst/2014/v7i8.20
  34. Wang H, Ren T, Zhu N, Yu Q, Li M. Co3O4 nanoparticles at sublethal concentrations inhibit cell growth by impairing mitochondrial function. Biochemical and Biophysical Research Communications. 2018;505(3):775-780. doi: 10.1016/j.bbrc.2018.10.002
  35. Wang RL, Zhang W, Zhang YZH, Zhang CX, Cheng JB, Jia HZH. Effects of dietary cobalt on Vitamin B12 synthesis, rumen fermentation and blood parameters of sheep. Chinese J Anim Nutr. 2007;19(5):534-538. doi: 10.3969/j.issn.1006-267X.2007.05.003
  36. Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med. 2019;7(1):78-93. doi: 10.1080/23144599.2019.1691379
 

Information about the authors:  

Ayna M Kamirova, Cand. Sci. (Biology), Researcher of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-548-44-89.

Elena A Sizova, Dr. Sci. (Biology), Head of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000; Professor of the Department of Biology and Soil Science, Orenburg State University, 13 Pobedy Ave., Orenburg, 460018, tel.: 8-912-344-99-07.

Daniil E Shoshin, Master, Laboratory Researcher of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-965-932-53-67.

Evgeny A Vlasov, Post-graduate Student, Laboratory Researcher of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-908-320-69-70.

 

The article was submitted 13.03.2023; approved after reviewing 16.03.2023; accepted for publication 20.03.2023.

Download