Svyatoslav V Lebedev, Elena V Sheyda, Oksana V Shoshina, Vera I Korneychenko

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 1. Р. 192-202.

 

doi:10.33284/2658-3135-106-1-192

 

Original article

Comparative analysis of the effect of various forms of iron on the course of metabolic processes

in rumen using "in vitro" method

 

Svyatoslav V Lebedev1, Elena V Sheyda2, Oksana V Shoshina3, Vera I Korneychenko4

1,2,3,4Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1lsv74@list.ru, https://orcid.org/orcid.org/0000-0001-9485-7010

2elena-snejjda@mail.ru, https://orcid.org/0000-0002-2586-613X

3oksana.shoshina.98@mail.ru, https://orcid.org/0000-0003-4104-3333

4icvniims.or@mail.ru

 

Abstract. The effect of various forms of iron in wheat bran on the course of metabolic processes in the rumen was studied by "in vitro" method. During the study, we used: I – wheat bran (control sample), II - wheat bran with iron chelate (2.0 mg/kg of dry matter; III - wheat bran with iron nanoparticles (1.4 mg/kg of dry matter). The chelated form of iron contributed to an increase in the digestibility of dry matter by 2.4%, and nanoparticles by 3.3% compared to the control. The addition of iron chelate to the samples shifted the metabolic profile in rumen towards acetate, with an increase in acetic acid concentration by 22.6 % (P≤ 0.01), the effect of iron in nanoform on similar indicators was insignificant. The inclusion of an iron chelate complex increased the total nitrogen level by 12.4% (P≤0.05), protein nitrogen by 14.2% (P≤0.05), non-protein nitrogen by 6.1% (P≤0.05), these indicators increased with the addition of iron in the nanoform by 13.3% (P≤0.05), 14.2% (P≤0.05) and 8.4% (P≤0.05), respectively. Iron nanoparticles stimulated the activity of amylase by 25.6% (P≤0.05) and protease by 19.6% (P≤0.05), the introduction of the chelated form of iron – by 12.9% and 10.3%, respectively. The pH-level was within the normal range and amounted to 6.4-6.8 in all experimental samples. Thus, the use of iron preparation in organic form contributed to the stimulation of metabolic processes in rumen against the background of the digestive enzymes activity, which will allow us to consider this form as a cofactor for stimulating biochemical reactions in the rumen and a prognostic factor for increasing productivity.

Keywords: bulls, Kazakh White-Headed breed, feeding, iron, digestibility, nitrogen, volatile fatty acids, amylase, protease

Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2023 FSBRI FRC BST RAS (No. 0761-2019-0005).

For citation: Lebedev SV, Sheyda EV, Shoshina OV, Korneychenko VI. Comparative analysis of the effect of various forms of iron on the course of metabolic processes in rumen using "in vitro" method. Animal Husbandry and Fodder Production. 2022;106(1):192-202. (In Russ.). https://doi.org/10.33284/2658-3135-106-1-192

 

References

 
  1. Sheida EV, Lebedev SV, Miroshnikov SA, Grechkina VV, Shoshina OV. Adaptive responses  of  cattle  digestive  system  as  influenced  by  dietary  ultrafine  iron  particles  combined  with  fat  diets.  Sel'skokhozyaistvennaya Biologiya [Agricultural Biology]. 2022;57(2):328-342. doi: 10.15389/agrobiology.2022.2.328eng
  2. Batoev CZh. Physiology of bird digestion. Ulan-Ude: Publishing House of Buryat State University; 2001:214 p.
  3. Levakhin YuI, Nurzhanov BS,  Ryazanov VA,  Dzhulamanov EB.  Changes  in  the  microbiocenosis  of  the  rumen  and  digestibility  of  the  dry  matter  of  the  diet  with  the introduction of gobies together fatty addition of ultrafine iron particles. Agrarian Bulletin of the Urals. 2020а;192(1):53-59. doi: 10.32417/1997-4868-2020-192-1-53-59.
  4. Kokoeva AT, Kokoeva AlT, Nogaeva VV. Technological bases of beef production with the use of nanopowder iron (Conference proceedings) Prospects for next-generation food production: materials of All-Russian scientific and research conference with international participation, (Omsk, 13-14 Apr. 2017). Omsk: Omsk SAU named after P.A. Stolypin; 2017:69-72.
  5. Manner K, Hundhauzen H. Bioavailability of chelate-based micro nutrients. Animal Husbandry of Russia. 2016;S2:67-68.
  6. Murphy R. Trace minerals, feeds and lack of minerals in diet: how the form of a trace mineral influences feed quality and animal health. Animal Husbandry of Russia. 2019;4:41-44.
  7. Kalashnikov AP, Fisinin VI, Shcheglova VV, Kleimenova NI. Norms and rations of feeding of farm animals: reference. manual 3rd ed., add. and reprint. M., 2003;110-123.
  8. Potemina TE, Volkova SA, Kuznetsova SV, Pereshein AV. General issues of iron metabolism and pathogenesis of iron deficiency anemia. Bulletin of the Medical Institute "REAVIZ" (Rehabilitation, doctor and health). 2020;3(45):125-137.
  9. Levahin YuI, Nurzhanov BS, Dzhamulanov EB, Ryazanov VA. Features of cicatricial digestion in fattening gobies when using a fat supplement enriched with ultrafine particles of Fe (Conference proceedings) Innovative activity as a factor in the development of the agro-industrial complex in modern conditions: Materials of All-Russian scientific and research conference, (Grozny, 28-29 February 2020). Grozny: ChSU named after A.A. Kadyrov. 2020b;242-246. doi: 10.36684/22-2020-1-242-246
  10. Schiogolev PO, Lemyakin AD, Chaitskiy AA, Sabetova KD, Kofiadi IA, Belokurov SG.  Polymorphism  of  the  kappa-casein  gene  in  dairy cattle populations of the Kostroma region and its effect on dairy productivity of cows. Agrarian Science. 2022;10:77-85. doi: 10.32634/0869-8155-2022-363-10-77-85
  11. Duskaev GK, Shejda EV, Rjazanov VA, Miroshnikov SA, Rahmatullin ShG. Taxonomic composition of the microbiome in ruminal fluid of beef calves with the additional inclusion of iron UFP in the fat diet: pat. 2022620671 Rus. Federation. Filing 24.03.2022; Publ. 29.03.2022, Bull. Number 4.
  12. Chernova EN, Yastrebova ON, Chernov IS. The influence of organic salts bimetallic on the scar digestion and milk production of cows. Scientific Notes Kazan Bauman State Academy of Veterinary Medicine. 2015;221(1):246-249.
  13. Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamashiro T, Iwasaki M, Umetsu K. Impacts of  iron  oxide  and  titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges. J Environ Manage. 2019;240:160-167. doi: 10.1016/j.jenvman.2019.03.089
  14. Kaczmarek B, Adaszek Ł, Miętkiewska K. Effect of mineral deficiencies on the red blood cell parameters in cattle. Medycyna Weterynaryjna. 2021;77(10):480-483. doi: 10.21521/mw.6570
  15. Lu C-W, Lee Y-C, Kuo C-S, Chiang C-H, Chang H-H, Huang K-C. Association of serum levels  of  zinc,  copper,  and  iron  with  risk  of  metabolic  syndrome.  Nutrients. 2021;13(2):548. doi: 10.3390/nu13020548
  16. RonEZ ,  Rosenberg  E. Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol. 2014;27:191-194. doi: 10.1016/j.copbio.2014.02.004
  17. Scherf L, Kretschmann J, Fischer M, Mielenz N, Möbius G, Getto S, Kaiser M, Müller H, Bittner L, Baumgartner W, Starke A. Thermographic monitoring of skin surface temperature associated with hot-iron disbudding in calves. Schweiz Arch Tierheilkd. 2020;162(3):174-184. doi: 10.17236/sat00251
  18. SinghD,  Malik K, Sindhu M,  Kumari N,  Rani V, Mehta S,  Malik K,  Ranga P,  Sharma K, Dhull N,  Malik S,  Arya N.  Biostimulation of anaerobic digestion using iron oxide nanoparticles (IONPs) for increasing biogas production from cattle manure. Nanomaterials (Basel). 2022;12(3):497. doi: 10.3390/nano12030497
  19. Wang Y, Jiang M, Zhang Z, Sun H. Effects of over-load iron on nutrient digestibility, haemato-biochemistry, rumen fermentation and bacterial communities in sheep. J Anim Physiol Anim Nutr (Berl). 2020;104(1):32-43. doi: 10.1111/jpn.13225
  20. Weerts J, Barandiaran Aizpurua MA, Brouwers JHM,  Mevenkamp J,  Schroen BLM,  Knackstedt C,  M Houben AJH,  Schrauwen-Hinderling VB,  Van Empel VPM. Effect of iron deficiency on skeletal muscle metabolism in heart failure with preserved ejection fraction. European Heart Journal. 2022;43(2):ehac544.778. doi: 10.1093/eurheartj/ehac544.778
  21. Xuan NH, Loc HT, Ngu NT. Blood biochemical profiles of Brahman crossbred cattle supplemented with different protein and energy sources. Vet World. 2018;11(7):1021-1024. doi: 10.14202/vetworld.2018.1021-1024
 

Information about the authors:

Svyatoslav V Lebedev, Dr. Sci. (Biology), corresponding member of the Russian Academy of Sciences, Leading Researcher, Biological Tests and Examinations, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-912-345-87-38.

Elena V Sheyda, Cand. Sci (Biology), Researcher, Biological Tests and Examinations, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-862-64-02.

Oksana V Shoshina, 3st year postgraduate student, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-891-96-55.

Vera I Korneychenko, Cand. Sci. (Agriculture), Leading Researcher of the Test Centre CUC, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, 8(3532)30-81-77.

 

The article was submitted 23.01.2023; approved after reviewing 10.03.2023; accepted for publication 20.03.2023.

Download