Ilmira Z Gubaidullina, Irina A Vershinina, Anastasia P Ivanishcheva

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 1. Р. 215-227.

 

doi: 10.33284/2658-3135-106-1-215

 

Original article    

Еffect of various forms of chromium on biochemical parameters, the antioxidant status of the body and the microbiological composition of the intestines of broiler chickens

 

Ilmira Z Gubaidullina1, Irina A Vershinina2, Anastasia P Ivanishcheva3

1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1gubaidullinae@mail.ru , https://orcid.org/0000-0001-7862-3660

2gavrish.irina.ogu@gmail.com

3nessi255@mail.ru, https://orcid.org/0000-0001-8264-4616

 

Abstract. Influence of various forms of chromium (Cr), namely chloride (CrCl3), picolinate (CrPic) and ultrafine particles (UDP Cr) on the biochemical parameters of blood, antioxidant status and microbiological composition of the intestinal contents of broiler chickens of the Arbor Acres cross was studied. In the course of the study, it was found that the Cr and CrPic UDPS stimulate an increase in live weight in the experimental groups by 9.2 and 10.3%, respectively, against the background of an increase in the content of nitric oxide metabolites (NO-metabolites) in the blood by 16.4 and 17.9% compared with the control group. No similar changes were found in the group with CrCl3. At the same time, the determination of the activity of catalase (CAT), superoxide dismutase (SOD) and raspberry dialdehyde (MDA) showed that feeding Cr and CrPic to UDP is not associated with oxidative stress. The introduction of CrCl3 increases the glucose and cholesterol levels in the blood, Cr and CrPic, on the contrary, reduce their levels. Amylase indices increased in the group receiving CrCl3, but decreased with the addition of CrPic. In the groups with UDP Cr and CrPic, there was an increase in the number of bifidobacteria by 24.2 and 17.7%, as well as lactobacilli by 25 and 27%, respectively, simultaneously with a decrease in the number of opportunistic microflora, which is especially noteworthy against the background of opposite effects in the CrCl3 group. Thus, the most optimal forms of Cr in the diet are: UDP and CrPic, which can be recommended for inclusion in the composition of premixes and additives.

Keywords: broiler chickens, feeding, growth, chromium, chromium picolinate, chromium chloride, antioxidant status

Acknowledgements: the work was supported by the grant of the President of the Russian Federation (No. 075-15-2022-680).

For citation: Gubaidullina IZ, Vershinina IA, Ivanishcheva AP. Influence of various forms of chromium on biochemical parameters, antioxidant status of the body and microbiological composition of the intestines of broiler chickens. Animal Husbandry and Fodder Production. 2023;106(1):215-227. (In Russ.). https://doi.org/10.33284/2658-3135-106-1-215

 

References

 
  1. Lebedev SV, Gavrish IA, Gubajdullina IZ, Shabunin SV. Effects caused by different doses of dietary chromium nanoparticles fed to broiler chickens. Sel’skokhozyaistvennaya biologiya [Agricultural Biology]. 2019a;54(4):820-831. doi: 10.15389/agrobiology.2019.4.820rus doi: 10.15389/agrobiology.2019.4.820eng
  2. Lebedev SV, Gubaidullina IZ, Vershinina IA, Makaeva AM, Markova IV, Klimova TA, Bogaditsa TP, Sokolay SL. The effect of chromium-containing ultrafine particles on the morphofunctional characteristics of organism of broiler chickens. Animal Husbandry and Fodder Production. 2019b;102(4):23-32. doi: 10.33284/2658-3135-102-4-23
  3. Gaziumarova LD, Titov LP, Klyuiko NL. Bacteriological diagnostics of intestinal dysbiosis: instructions for use. Minsk; 2010:18 p.
  4. Mazhitova MV. Spectrophotometric determination of the level of nitrogen monoxide metabolites in the blood plasma and brain tissue of white rats. 2011;3. URL: www.science-education.ru/97-4655
  5. Saleeva IP, Lysenko VP, Shol’ VG et al. Methodology for conducting research on the technology of eggs and poultry meat production: methodological guidelines. Lukashenko VS and Kavtarashvili ASh are responsible editors. Sergiev Posad, 2015; 103 p.
  6. Gubaidullina IZ, Gavrish IA, Lebedev SV,  Markova IV.  Morphological  and  biochemical indicators of broiler chickens when using chromium nanoparticles. Veterinary and Nutrition. 2019;1:6-9. doi: 10.30917/ATT-VK-1814-9588-2019-1-2
  7. Akbari M, Torki M. Effects of dietary chromium picolinate and peppermint essential oil on growth performance and blood biochemical parameters of broiler chicks reared under heat stress conditions. Int J Biometeorol. 2014;58(6);1383-1391. doi: 10.1007/s00484-013-0740-1
  8. Arif M, Hussain I, Mahmood MA, Abd El-Hack ME, Swelum AA, Alagawany M, et al. Effect of varying levels of chromium propionate on growth performance and blood biochemistry of broilers. Animals. 2019;9(11):935. doi: 10.3390/ani9110935
  9. Attia YА, Bakhashwain AAS, Bertu NK. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. Eur Poult Sci. 2018;82:15. doi: 10.1399/eps.2018.238
  10. Berenjian A, Sharifi SD, Mohammadi-Sangcheshmeh A, Ghazanfari S. Effect of chromium nanoparticles on physiological stress induced by exogenous dexamethasone in japanese quails. Biol Trace Elem Res. 2018;184(2):474-481. doi: 10.1007/s12011-017-1192-y
  11. 12. Dalólio FS, Albino LFT, Silva JN,  Campos PHRF,  Lima HJD, Moreira J, Ribeiro Jr V. Dietary chromium supplementation for heat-stressed broilers. World Poult Sci J. 2018;74(1):101-116. doi: 10.1017/S0043933917001064
  12. El-Kholy MS, El-Hindawy MM, Alagawany M, Abd El-Hack ME, El-Sayed SAA. Dietary supplementation of chromium can alleviate negative impacts of heat stress on performance, carcass yield, and some blood hematology and chemistry indices of growing Japanese quail. Biological Trace Element Research. 2017;179;148-157. doi: 10.1007/s12011-017-0936-z
  13. Feng C, Wuren Q, Zhang X, Sun X, Na Q. Effects of dietary chromium picolinate supplementation on broiler growth performance: A meta-analysis. PLoS ONE. 2021;16(4):e0249527. doi: 10.1371/journal.pone.0249527
  14. Garcia-Ruiz A, Bartolome  B,  Martinez-Rodriguez  AJ, Puello  E,  Martin-Alvarez  PJ,  Moreno-Arribas  MV.  Potential  of  phenolic  compounds  for  con-trolling  lactic  acid  bacteria  growth  in  wine.  Food Control. 2008;19(9):835-841. doi:   doi: 10.1016/j.foodcont.2007.08.018
  15. Ghazi Sh, Habibian M, Moeini MM, Abdolmohammadi AR. Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress. Biol Trace Elem Res. 2012;146:309-317. doi: 10.1007/s12011-011-9260-1
  16. 17. Ghorbani MR, Bojarpur M, Mayahi M, Fayazi J, Fate-mitabatabaei R, Tabatabaei S, Zulkifli I. Short communication. Effects of purslane extract on performance, immunity responses and cecal  microbial  population  of  broiler  Span J Agric Res. 2014;12(4):1094-1098.  doi: 10.5424/sjar/2014124-5483
  17. Gubajdullina IZ, Gavrish IA, Lebedev SV. Effect of metallic nanoparticles on exchange of chemical elements in broiler chickens. IOP Conf. Series: Earth and Environmental Science. 2019;341:012169. doi: 10.1088/1755-1315/341/1/012169
  18. Gwiazdowska D, Juś K, Jasnowska-Małecka J, Kluczyńska K. The impact  of  polyphenols  on Bifidobacterium . Acta  Biochim  Pol. 2015; 62(4): 895-901. doi: 10.18388/abp.2015_1154
  19. Hajializadeh F, Ghahri H, Talebi A. Effects of supplemental chromium picolinate and chromium nanoparticles on performance and antibody titers of infectious bronchitis and avian influenza of broiler chickens under heat stress condition. Vet Res Forum. 2017;8(3):259-264.
  20. Hayat K, Bodinga BM, Han D, Yang X, Sun Q, Aleya L, et al. Effects of dietary inclusion of chromium propionate on growth performance, intestinal health, immune response and nutrient transporter gene expression in broilers. Sci Total Environ. 2020;705:135869. doi:10.1016/j.scitotenv.2019.135869
  21. Huang Y, Yang J, Xiao F, Lloyd K, Lin X. Effects of supplemental chromium source and concentration on growth performance, carcass traits, and meat quality of broilers under heat stress conditions. Biol Trace Elem Res. 2016;170(1):216-223. doi: 10.1007/s12011-015-0443-z
  22. Kani MM. The effects of different sources of organic and inorganic chromium on blood parameters of broiler chickens. Indian Journal of Science and Technology. 2015;8(28):1-7. doi: 10.17485/ijst/2015/v8i28/82778
  23. Kurnianto E. Chromium picolinate feed supplement and composition of meat in bird. Asia-Africa Journal of Agriculture. 2022;1:141-150.
  24. Lebedev S, Gavrish I, Gubajdullina I, Shejda E. The use of nanoparticles in feeding and their effect on the morphological and physiological parameters of broilers. In: 19th International Multidisciplinary Scientific GeoConference SGEM 2019: Conference proceedings, Albena, 30 June - 6 July; Bulgaria, Sofia: STEF92 Technology Ltd., 2019;19:1011-1018. doi: 10.5593/sgem2019/6.1/S25.130
  25. Li A, Ding J, Shen T, Han Z, Zhang J, Abadeen ZU, Kulyar MF-e-A, Wang X, Li K. Environmental hexavalent chromium exposure induces gut microbial dysbiosis in chickens. Ecotoxicology and Environmental Safety. 2021;227:112871 doi: 10.1016/j.ecoenv.2021.112871
  26. Lipiński K, Mazur M, Antoszkiewicz Z, Purwin C. Polyphenols in monogastric  nutrition - a  review. Ann Anim Sci. 2017;17(1):41-58. doi: 10.1515/aoas-2016-0042
  27. Lu L, Zhao LL, Dong SY, Liao XD, Dong XY, Zhang LY, et al. Dietary supplementation of organic or inorganic chromium modulates the immune responses of broilers vaccinated with Avian Influenza virus vaccine. Animal. 2019;13(5):983-991. doi: 10.1017/S1751731118002379
  28. Ognik K, Drażbo A, Stępniowska A, Kozłowski K, Listos P and Jankowski J. The effect of chromium nanoparticles and chromium picolinate in broiler chicken diet on the performance, redox status and tissue histology. Anim Feed Sci Technol. 2020;259:114326. doi: 10.1016/j.anifeedsci.2019.114326
  29. Piray A, Foroutanifar S. Chromium supplementation on the growth performance, carcass traits, blood constituents, and immune competence of broiler chickens under heat stress: a systematic review and dose–response meta-analysis. Biol Trace Elem Res. 2022;200:2876-2888. doi: 10.1007/s12011-021-02885-x
  30. Safwat AM, Elnaggar AS, Elghalid OA, EL-Tahawy WS. Effects of different sources and levels of dietary chromium supplementation on performance of broiler chicks. Anim Sci J. 2020;91(1):e13448. doi: 10.1111/asj.13448
  31. Sahin K, Kuçuk O, Sahin N. Effects of dietary chromium picolinate supplementation on performance and plasma concentrations of insulin and corticosterone in laying hens under low ambient temperature. J Anim Physiol Anim Nutrt. 2001;85(5-6):142-147. doi: 10.1046/j.1439-0396.2001.00314.x
  32. Saracila M, Panaite TD, Tabuc C, Soica C, Untea A, Varzaru I, Wojdyło A, Criste RD. Maintaining intestinal microflora balance in heat-stressed broilers using dietary creeping wood sorrel (Oxalis corniculata) powder and chromium (chromium picolinate). Spanish Journal of Agricultural Research. 2020;18(3):e0612. doi: 10.5424/sjar/2020183-16146
  33. Sembratowicz I, Ognik K. Evaluation immunotropic activity of gold nanocolloid in chickens. J Trace Elem Med Biol. 2018;47:98-103. doi: 10.1016/j.jtemb.2018.02.006
  34. Stępniowska A, Drażbo A, Kozłowski K, Ognik K, Jankowski J. The effect of chromium nanoparticles and chromium picolinate in the diet of chickens on levels of selected hormones and tissue antioxidant status. Animals. 2020;10(1):45. doi: 10.3390/ani10010045
  35. Swaroop A, Bagchi M, Preuss HG, Zafra-Stone S, Ahmad T, Bagchi D. Chapter 8. Benefits of chromium (III) complexes in animal and human health. In: Vincent JB, editor. The nutritional biochemistry of chromium (III). 2nd ed. Elsevier; 2019:251-278. doi: 10.1016/B978-0-444-64121-2.00008-8
  36. Tawfeek SS, Hassanin KMA, Youssef IMI. The effect of dietary supplementation of some antioxidants on performance, oxidative stress, and blood parameters in broilers under natural summer conditions. J World’s Poult Res. 2014;4(1):10-19.
  37. Tzonuis X, Vulevic  J,  Kuhnle  GGC,  George  T,  Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JPE. Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr. 2008;99(4):782-792. doi:   10.1017/S0007114507853384
  38. Valera M, Casasola R, Gutiérrez O, Sánchez-Chiprés DR, Mireles S. Effects of supplementation with a novel organic chromium product on metabolic and physiological indicators of broilers. J Anim Health Prod. 2021;9(1):13-21. doi: 10.17582/journal.jahp/2021/9.1.13.21
  39. Xu J, Zhao Q, Qu Y; Ye F. Antioxidant activity and anti-exercise-fatigue effect of highly denatured soybean meal hydrolysate prepared using neutrase. J Food Sci Technol. 2015;52:1982-1992. doi: 10.1007/s13197-013-1220-7
  40. Yadav S, Jha R. Strategies  to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Anim Sci Biotechnol. 2019;10(1):2.        doi: 10.1186/s40104-018-0310-9
  41. Yao Q, Yang H, Wang X, Wang H. Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles. Chemosphere. 2019;216:313-323. doi: 10.1016/j.chemosphere.2018.10.147
  42. Zha L, Xu Z, Wang M, Gu L. Effects of chromium nanoparticle dosage on growth, body composition, serum hormones and tissue chromium in Sprague-Dawley rats. J Zhejiang Univ Sci B. 2007;8(5):323-30. doi: 10.1631/jzus.2007.B0323
  43. Zheng C, Huang Y, Xiao F, Lin X, Lloyd K. Effects of supplemental chromium source and concentration on growth, carcass characteristics, and serum lipid parameters of broilers reared under normal conditions. Biol Trace Elem Res. 2016;169(2):352-358. doi: 10.1007/s12011-015-0419-z

Information about the authors:

Ilmira Z Gubaidullina, Cand. Sci (Biology), Researcher, Laboratory of Agroecology and Soil Science, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-912-843-10-69.

Irina A Vershinina, Researcher, Laboratory Biological Tests and Examinations, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-798-67-88.

Anastasia P Ivanishcheva, specialist technician, employee at the Testing Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-843-58-22.

 

The article was submitted 16.11.2022; approved after reviewing 01.03.2023; accepted for publication 20.03.2023.

Download