Anastasia M Gvozdikova, Svyatoslav V Lebedev, Mikhail Yu Cherednichenko, Oksana B Polivanova

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 1. Р. 239-247.

 

doi: 10.33284/2658-3135-106-1-239

 

Original article

Study of callus cultures of O. basilicum

 

Anastasia M Gvozdikova 1, Svyatoslav V Lebedev 2, Mikhail Yu Cherednichenko3, Oksana B Polivanova4

1,2Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

3,4 Russian State Agrarian University - Moscow Agricultural Academy named after K.A. Timiryazev, Moscow, Russia

1anastasiaporv@mail.ru, https://orcid.org/0000-0002-7981-7245

2lsv74@list.ru, https://orcid.org/0000-0001-9485-7010

3https://orcid.org/0000-0002-7856-9454

4polivanovaoks@gmail.com, https://orcid.org/0000-0002-3992-5452

 

Abstract. Calluses were obtained from leaf and stem explants of O. basilicum basil plants of Russian giant green (RGG) and Russian giant violet (RGV) varieties on Murashige and Skoog (MS) nutrient substratum with 2,4 dichlorophenoxyacetic acid (2,4-D) in 2,4-D concentrations of 1, 2 and 3 mg/l and a mixture of 0.3 mg/l indole-3-acetic acid (IAA) with 3 mg/l benzylaminopurine (BAP). The substratum variant with auxin 2,4-D at a concentration of 2 mg/l (MS+2 mg/l 2,4-D) was optimal for the initiation of callusogenesis in basil stem explants. The study determined the content of chlorophyll (Chl) a and b, as well as their ratio in calluses. In almost all cases, the amount of Chl b prevailed over Chl a, but callus showed no growth inhibition according to visual assessment. The maximum content of chlorophylls was recorded when using explants from leaves on MS+1 mg/l 2,4-D substratum (for RGG variety) and MS+3 mg/l BAP+0,3 mg/l IAA substratum (for RGV variety).

Keywords: callus, photosynthetic pigments, basil, antioxidants, auxins, cytokinin, chlorophyll

Acknowledgments: the work was performed in accordance to the plan of research works for 2022-2024 FSBRI FRC BST RAS (No. 0526-2022-0014).

Для цитирования: Gvozdikova AM, Lebedev SV, Cherednichenko MYu, Polivanova OB. Study of callus cultures of O. basilicum. Animal Husbandry and Fodder Production. 2023;106(1):239-247. (In Russ.). https://doi.org/10.33284/2658-3135-106-1-239

 

References

 
  1. Lebedev SV, Korotkova AM, Osipova EA. Influence of Fe0 nanoparticles, magnetite Fe3O4 nanoparticles, and iron (II) sulfate (FeSO4) solutions on the content of photosynthetic pigments in Triticum Vulgare. Russian Journal of Plant Physiology. 2014;61(4):564-569. doi: 10.7868/S0015330314040125 doi: 10.1134/S1021443714040128
  2. Mazets ZhE, Sudeynaya SV. Workshop on plant physiology. Part I: educational and methodical manual. Minsk: BSPU; 2009:64 p.
  3. Korotkova AM, Lebedev SV, Kayumov FG, Sizova EA. Biological effects of wheat (Triticum vulgare L.) under the influence metal nanoparticles (Fe, Cu, Ni) and their oxides (Fe3O4, CuO, NiO). Sel’skokhozyaistvennaya biologiya [Agricultural Biology]. 2017;52(1):172-182. doi: 10.15389/agrobiology.2017.1.172eng
  4. Açıkgöz MA. Effects of sorbitol on the production of phenolic compounds and terpenoids in the cell suspension cultures of Ocimum basilicum L. Biologia. 2021;76(1):395-409. doi: 10.2478/s11756-020-00581-0
  5. Adil M, Abbasi BH, ul Haq I. Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. Biotechnol Rep. 2019;24:e00380. doi: 10.1016/j.btre.2019.e00380
  6. Ahmed HA, Yu-Xin T, Qi-Chang Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. South Afr J Botany. 2020;130:75-89. doi: 10.1016/j.sajb.2019.12.018
  7. Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants. Plant Signal. Behav. 2020;15(6):1737450. doi: 10.1080/15592324.2020.1737450
  8. Chen X, Song W, Wang L, Guo W, Xue X. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae. 2017;223:44-52. doi: 10.1016/j.scienta.2017.04.037
  9. Chutimanukul P, Saputro TB, Mahaprom P, Plaimas K, Comai L, Buaboocha T, et al. Combining genome and gene Co-expression network analyses for the identification of genes potentially regulating salt tolerance in rice. Front. Plant Sci. 2021;12:704549. doi: 10.3389/fpls.2021.704549
  10. Efferth T. Biotechnology applications of plant callus cultures. Engineering. 2019;5(1):50-59. doi: 10.1016/j.eng.2018.11.006
  11. Hakkim FL, Shankar CG, Girija S. Chemical composition and antioxidant property of holy basil (Ocimum sanctum l.) leaves, stems, and inflorescence and their in vitro callus cultures. J Agric Food Chem. 2007;55(22):9109- 9117. doi: 10.1021/jf071509h
  12. Jakovljević D, Momčilović J, Bojović B,  Stanković  M. The short-term metabolic modulation of basil (Ocimum basilicum L. cv. ‘Genovese’) after exposure to cold or heat. Plants. 2021;10(3):590. doi: 10.3390/plants10030590
  13. Kozai T, Niu G, Takagaki M, editors. Plant factory: an indoor vertical farming system for efficient quality food production. 2nd ed. London, UK: Academic press; 2019: 516 p.
  14. Nazir S, Jan H, Tungmunnithum D, Drouet S, Zia M, Hano C, Abbasi BH. Callus culture of Thai basil is an efective biological system for the production of antioxidants. Molecules 2020;25(20):4859. doi: 10.3390/molecules25204859
  15. Nguyen TK, Cho KM, Lee HY, Cho DY, Lee GO, et al. Effects of white LED lighting with specific shorter blue and/or green wavelength on the growth and quality of two lettuce cultivars in a vertical farming system. Agronomy. 2021;11(11):2111. doi: 10.3390/agronomy11112111
  16. Rajaram R, Priya D, Sudarshana DV, Suresh KP. In vitro regeneration of Caralluma fimbriata wall. by organogenesis: a potent medicinal plant. A.J.C.S. 2012;6(1):41-45.
  17. Sreelatha VR, Thippeswamy M, Pullaiah T. In vitro callus induction and plant regeneration from intermodal explants of Caralluma stalagmifera fischer. Intl J Adv Res. 2015;3(2): 472-478.
  18. Wongsen W, Bodhipadma K, Noichinda S, Leung DWM. Infuence of diferent 2,4-D concentrations on antioxidant contents and activities in sweet basil leaf-derived callus during proliferation. Int Food Res J. 2015;22(2):638-664.
  19. Yoshikawa M, Luo W, Tanaka G, Konishi Y, Matsuura H, Takahashi K. Wounding stress induces phenylalanine ammonia lyases, leading to the accumulation of phenylpropanoids in the model liverwort Marchantia polymorpha. Phytochemistry. 2018;155:30-36. doi: 10.1016/j.phytochem.2018.07.014
   

Information about the authors:

Anastasia M Gvozdikova, Cand. Sci. (Biology), Senior Researcher, Laboratory of Biological Tests and Examinations, Federal Research Centrе of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 89822084220.

Svyatoslav V Lebedev, Dr. Sci. (Biology), Corresponding Member of Russian Academy of Sciences, Leading Researcher, Biological Tests and Examinations, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-912-345-87-38.

Mikhail Yu Cherednichenko, Cand. Sci. (Biology), Acting Head of the Department of Biotechnology, Associate Professor, Russian State Agrarian University - Moscow Agricultural Academy named after K.A. Timiryazev, 49, Timiryazevskaya St., Moscow, 127434.

Oksana B Polivanova, Cand. Sci. (Biology), Associate Professor of the Department of Biotechnology, Russian State Agrarian University - Moscow Agricultural Academy named after K.A. Timiryazev, 49, Timiryazevskaya St., Moscow, 127434, tel.: 89689874703.

The article was submitted 30.12.2022; approved after reviewing 02.03.2023; accepted for publication 20.03.2023.

Download