Anastasia P Ivanishcheva, Elena A Sizova, Anna M Kamirova, Lyra L Musabayeva, Maxim V Solovyov

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 2. Р. 85-111.

 

doi:10.33284/2658-3135-106-2-85

 

Review article

Macro- and microelements in animal nutrition: a variety of substances and forms (review)

 

Anastasia P Ivanishcheva1, Elena A Sizova2,3, Anna M Kamirova4, Lyra L Musabayeva5,

Maxim V Solovyov6

1,2,4,5,6Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

3Orenburg State University, Orenburg, Russia

1nessi255@mail.ru, https://orcid.org/0000-0001-8264-4616

2,3Sizova.L78@yandex.ru, https://orcid.org/0000-0002-5125-5981

4ayna.makaeva@mail.ru, https://orcid.org/0000-0003-1474-8223

5musabaeva_l@mail.ru, https://orcid.org/0000-0003-0199-1013

6fncbst@mail.ru

 

Abstract. Actualization of the problem of rationing macro- and microelements in animal husbandry, in order to optimize the health and productivity of animals while ensuring environmental sustainability and safety of food consumers, is an important task at the present stage of the development of animal science. Previously, the diets of cattle were normalized only according to 8 trace elements, but by 1996, two more elements were included at the sessions of the National Research Council (NRC), but without the established requirements. Further, its content did not change. The figures for rationing Co, Cu increased by 20%. At the same time, the given standards of the need for elements should be considered purely orienting. Despite the large number of publications on mineral metabolism, information about the actual size of the assimilation of macro and microelements from various types of diets is very approximate. In practice, the lack of trace elements is compensated by the introduction of chemical inorganic compounds into the diet. Mineral salts are most widely used for these purposes. This form of substance has gained popularity due to its availability and budget cost. Among inorganic trace elements, sulfate and chloride forms are usually the most bioavailable. Meanwhile, the inorganic form of the substance has a number of disadvantages, high toxicity, low bioavailability compared to other forms.

Thus, among the variety of registered mineral feed additives different forms of trace elements, both inorganic and organic, are found as ingredients. A rational approach to their use should take into account, among other things, information about their bioavailability.

Keywords: animal husbandry, cattle, mineral nutrition, trace elements, nutrition

 Acknowledgments the work was supported by the Russian Science Foundation,  Рroject No. 22-26-00254.

For citation: Ivanishcheva AP, Sizova EA, Kamirova AM, Musabayeva LL, Solovyov MV. Macro- and microelements in animal nutrition: variety of substances and forms (review). Animal Husbandry and Fodder Production. 2023;106(2):85-111. (In Russ.). https://doi.org/10.33284/2658-3135-106-2-85

 

References

 
  1. Aliyev MM, Guliyeva KA. Digestibility of nutrients in a complex (integrated) ration with bioactive substances. Agricultural Bulletin of Stavropol Region. 2018;1(29):57-59.
  2. Levakhin YuI, Nurzhanov BS, Djulamanov EB, Ryazanov VA. The influence of fat-containing supplements pulmatrix enriched with Si nanoparticles in the composition of the diet on hematological and natural resistance of fattened steers. (Conference proceedings). Kurgan: Izd-vo Kurganskoj GSHA; 2019:147-152.
  3. Semenov SN, Aristov AV, Zuev NP, Krut' UA, Zueva EE. The effect of stevia pulp on the body of highly productive cows and the dynamics of cicatricial microflora (Conference proceedings) Innovations in life sciences: Materials of the II International Symposium (Belgorod, May 19-20, 2020) edit. Spichak IV. Belgorod: ID «BelGU» NIU «BelGU»; 2020:252-254.
  4. Ivanov IS, Rudenok VA, Troshin EI, Kulikov AN. Influence of the organic form Cu, Co, Zn and Mn on the animal organism. Legal regulation in veterinary medicine. 2016;4:246-249.
  5. Gorlov IF, Dorokhin ME, Randelin DA, Nikolaev DV.  Effect of a new feed supplement on beef performance and dressing yield of steers. Bulletin of Altai State Agricultural University. 2014;4(114):68-72.
  6. Galiev DM. Mineral and sorption supplements in the diet of broiler chickens. Agrarian Education and Science. 2015;1:3.
  7. Georgievsky VI, Annenkov BN, Samokhin VT. Mineral'noe pitanie zhivotnyh. Moscow: Kolos; 1979:471 p.
  8. Gorlov IF, Randelin DA, Natyrov AK. Effectiveness of rearing beef bulls of specialized beef breeds. Bulletin of Kalmyk University. 2013;3(19):14-20.
  9. Egorov I, Papazyan T. Modern trends in poultry feeding. Poultry Farming. 2007;8:9-11.
  10. Egorov I, Selina N. New trends in poultry feeding. Mixed Feed. 2004;6:5.
  11. Egorov IA. Modern trends in poultry nutrition. Poultry Farming. 2014;4:11-16.
  12. Zubkova AS, Davydova MN, Moshkina SV. Organization of mineral nutrition of cows and the consequences of unbalanced mineral nutrition (Conference proceedings) Contribution of university agrarian science to the innovative development of the agro-industrial complex: materials of the 70th Intern. scientific-practical. conf., (Ryazan, May 23, 2019). Ryazan: RGATU im. P.A. Kostychev; 2019:60-63.
  13. Bogoslovskaya OA, Sizova EA, Polyakova VS, Miroshnikova SA, Leipunsky IO, Olkhovskaya IP, Glushchenko NN. Study of safety of copper nanoparticles introduction with different physical and chemical characteristics into animals' organism. Vestnik Orenburg State University. 2009;2(96):124-127.
  14. Glushchenko NN, et al. Study of the structure and functional activity of iron nanoparticles. XVIII Mendeleev Congress on General and Applied Chemistry: Sat. theses. Moscow: Granitsa; 2007:28-31.
  15. Kamirova AM, Ivanishcheva AP. Determination of digestibility "in vitro" with the introduction of various mineral complexes (Conference proceedings) Modern trends in the development of science and the world community in the era of digitalization: coll. materials X Intern. Scientific-practical. conf., (Moscow, December 15, 2022). Makhachkala: Alef Publishing House; 2022:243-246. doi:10.34755/IROK.2022.16.16.050
  16. Kozina ЕA, Poleva TA. Normalized feeding of animals: a textbook. Krasnoyarsk: KrasGAU, 2020:139 р.
  17. Kokorev VA, Prytkov YuN, Guryanov AM. The contribution of students of Professor S.A. Lapshina in the development of the theory and practice of mineral nutrition of animals (Conference proseedings) Resource-saving environmentally safe technologies for the production and processing of agricultural products: materials of the IX Intern. scientific-practical. conf. "Lapshinsky Readings" (Saransk, April 18-19, 2013). Saransk: National Research Mordovian State University. N.P. Ogaryova, 2013:15-21.
  18. Kondakova KS, Drozdova YeA, Yapryntseva YeV. Influence of various types of processing of feed products and additives containing micro-, nanoparticles of metals, on the ability of rumen bacteria to adhere. Izvestiya of the Orenburg State Agrarian University. 2012;1(33):245-247.
  19. Korochkina EA. The influence of trace elements zinc, cobalt, iodine, selenium, manganese, copper on the health and productive ability of animals. Genetics and Breeding of Animals. 2016;3:69-73.
  20. Kochish II, Shukanov RA, Shukanov AA, Altynova NV. Correction of the immunophysiological development of gobies with bioactive substances in the iodine-selenium-deficient region (Conference proceedings) Adaptation and reactivity of domestic animals: materials of the Intern. scientific-practical. Conf., dedicated to the 100th anniversary of the founding of the Department of Animal Physiology, (Moscow, April 23-24, 2020). Moscow: Publishing house LLC NPO Agricultural Technologies; 2020:106-109.
  21. Kravchenko AV. The effectiveness of the use of chromium nanoparticles in the diets of fattening pigs. Agriculture - problems and prospects: coll. scientific tr. ed. VC. Pestis. Grodno: GSAU; 2017;37:134-141.
  22. Kryukov VI. Nanotechnology: achievements and prospects of development in the food industry and fodder production (Conferense proseedings) Innovative fundamental and applied research in the field of chemistry for agricultural production: materials of the IV Intern. correspondence scientific-practical. Internet Conf., (Orel, May 30, 2011). Eagle: OGAU im. N.V. Parakhina; 2011:225-227.
  23. Kurilkina MYa, Muslyumova DM, Atlanderova KN. Highly dispersed metal powders contribute to the improvement of the productive qualities of meat bulls (Conferense proseedings) Status and prospects for increasing the production of high-quality agricultural products: materials of the VII Intern. scientific-practical. conf., held jointly with the Tomsk Agricultural Institute - a branch of the Federal State Budgetary Educational Institution of Higher Education Novosibirsk State Agrarian University, (Ufa-Tomsk, June 06-08, 2019). Ufa: FGBOU VO "Bashkir State Agrarian University"; 2019:57-59.
  24. Lashkova TB, Petrova GV. Influence of ultra dispersion humato-sapropel suspension on biochemical composition of blood of heifers. Vestnik of Ulyanovsk State Agricultural Academy. 2022;3(59):199-202. doi: 10.18286/1816-4501-2022-3-199-202
  25. Nazarova AA, Polishchuk SD. Influence of nanocrystalline iron on mineral metabolism in animals. Sat. abstracts of the participants of the Second Intern. scientific competition. works of young scientists in the field of nanotechnology. M.: State Corporation "Russian Corporation of Nanotechnologies"; 2009:790-792.
  26. A new line of premixes for high-yielding cows from "Mustang feeding technology". Farm News. 2019;5:38-39.
  27. Okolelova TM, Kulakov AB, Moleskin SA. Vitamin and mineral nutrition of poultry: monograph. Moscow; 2000:78 p.
  28. Sizova EA, Nechitailo KS, Ivanishcheva AP, Ryabov NI. The prospects of using ultra-dispersed forms of metals in animal feeding. Animal Husbandry and Fodder Production. 2020;103(3):177-189. doi: 10.33284/2658-3135-103-3-177
  29. Sizova EA, Nechitailo KS, Ivanishcheva AP. The use of ultra-dispersed forms of metals in diets as mineral feed additives. (Conference proceedings) Fundamental foundations of the technological development of agriculture: materials of the Russian scientific-practical. conf. with international participation, (Orenburg, October 24-25, 2019). Orenburg: Federal State Budget Scientific Institution FNTs BST RAS; 2019:280-284.
  30. Makaeva AM, Atlanderova KN, Miroshnikov SA, Syzova ЕA, Lebedev SV, Rogachev BG, Kosian DB, Yausheva EV. The ability to increase the digestibility of feed when included in the diet of fattening bulls ultrafine particles of silicon dioxide: Pat. 2722730 Rus. Federation. Appl. 18.06.2019; publ. 03.06.2020, Bul. No. 16.
  31. Vashchekin EP, Nuriev GG, Gamko LN, Podobai GF, Malyavko IV, Artyukov II, Shepelev SI, Podolnikov VE, Zakharchenko GD, Bazutko NP. Reference materials on animal husbandry. Bryansk: Publishing House of the Bryansk State Agricultural Academy;2011:114 p.
  32. Garipova NV, Kholodilina TN, Kurilkina MYa, Vanshin VV. Physical parameters of iron microparticles and bioavailability after exposure with very high frequency. Animal Husbandry and Fodder Production. 2019;102(2):21-29. doi:10.33284/2658-3135-102-2-21
  33. Frolov AN, Zavyalov OA, Kharlamov AV. Changes in the qualitative characteristics of milk of the Hereford breed when using injections of a microelement preparation (Conference proceedings) Perspective agrarian and food innovations: materials of the Intern. scientific-practical. conf., (Volgograd, June 06-07, 2019). under the general ed. I.F. Gorlov. Volgograd: Sfera LLC. 2019;1:27-31.
  34. Shipilov V, Pereslegina I. New in poultry feeding. Poultry Farming. 1999;6:30-31.
  35. Efficient feed additive for cattle, pigs and laying hens. Agrarian Science. 2021;(3):41-42.
  36. Gertseva KA, Dubov DV, Kadyrov AV, Kiseleva EV, Sitchikhina AV. The effectiveness of feed additives "Koupit dry plus" in the prevention of internal non-contagious diseases of the postpartum period in cows. Herald of Ryazan State Agrotechnological University Named after P.A. Kostychev. 2020;1(45):21-27. doi: 10.36508/RSATU.2020.45.1.004
  37. Rakhmanova GF, Sukhanova IM, Prishchepenko EA, Ezhkov VO. Efficiency of pre-sowing seed treatment of spring barley by nanostructured water-phosphorite suspension. Scientific Notes Kazan Bauman State Academy of Veterinary Medicine. 2020;244(4):153-157. doi: 10.31588/2413-4201-1883-244-4-153-157
  38. Ahola JK, Baker DS, Burns PD, Mortimer RG, Enns RM, Whittier JC, Geary TW, Engle TE. Effect of  copper,  zinc,  and  manganese  supplementation  and  source  on  reproduction,  mineral  status, and  performance  in  grazing  beef  cattle  over  a  two-year  period.  J Anim Sci. 2004;82(8):2375-2383. doi: 10.2527/2004.8282375x
  39. Aluc Y, Ekici H. Investigation of heavy metal levels in blood samples of three cattle breeds in turkey. Bull Environ Contam Toxicol. 2019;103(5):739-744. doi: 10.1007/s00128-019-02712-z
  40. Aristov A, Semyonov S, Falkov M. Use of a sorption-probiotic feed additive in the diet of cows. Med Weter. 2021;77(12):594-598. doi: 10.21521/mw.6585
  41. Arthington JD, Ranches J. Trace mineral nutrition of grazing beef cattle. Animals. 2021;11(10):2767. doi: 10.3390/ani11102767
  42. Arthington JD, Rechcigl JE, Yost GP, McDowell LR, Fanning MD. Effect of ammonium sulfate fertilization on bahiagrass quality and copper metabolism in grazing beef cattle. J Anim Sci. 2002;80(10):2507-2512. doi: 10.2527/2002.80102507x
  43. Arthington JD, Swensont CK. Effects of trace mineral source and feeding method on the productivity of grazing braford cows. Prof Anim Sci. 2004;20(2):155-161. doi: 10.15232/S1080-7446(15)31290-0
  44. Bortoluzzi C, Vieira BS,  Applegate TJ.  Influence  of  dietary  zinc,  copper,  and  manganese   on   the   intestinal  health  of  broilers  under  eimeria  challenge.  Front  Vet  Sci.  2020;7:13. doi: 10.3389/fvets.2020.00013
  45. Burrell AL, Dozier WA, Davis AJ, Compton MM, Freeman ME, Vendrell PF, Ward TL. Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. Br Poult Sci. 2004;45(2):225-263. doi: 10.1080/00071660410001715867
  46. Canty MJ, Scanlon A,  Collins DM,  McGrath G,  Clegg TA, Lane E, Sheridan MK, More SJ. Cadmium and other heavy metal concentrations in bovine kidneys in the Republic of Ireland. Sci Total Environ. 2014;485-486:223-231. doi: 10.1016/j.scitotenv.2014.03.065
  47. Elliott S, Frio A, Jarman T. Heavy metal contamination of animal feedstuffs - a new survey. J Appl Anim Nutr. 2017;5:e8. doi: 10.1017/jan.2017.7
  48. Galbraith ML, Vorachek WR, Estill CT, Whanger PD, Bobe G, Davis TZ, Hall JA. Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biol Trace Elem Res. 2016;171(2):338-343. doi: 10.1007/s12011-015-0560-8
  49. Gayathri SL, Panda N. Chelated minerals and its effect on animal production: A review. Agric Rev. 2018;39(4):314-320. doi: 10.18805/ag.R-1823
  50. Gerber PJ, Steinfeld H,  Henderson B,  Mottet A,  Opio C,  Dijkman J.  Falcucci A, Tempio G. Tackling climate change through livestock – a global assessment of emissions and miti-gation. Italy, Rome: Food and Agriculture Organization of the United Nations (FAO); 2013:139.
  51. Glawischnig W, Dengg H, Liftinger G. Case Report: Lead Intoxication of a calf due to environmental contamination from a previous mine. Vet Med Austria. 2021;108:229-236.
  52. Goff JP. Invited review: mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci. 2018;101(4):2763-2813.doi: 10.3168/jds.2017-13112
  53. Greene LW. Designing mineral supplementation of forage programs for beef cattle. J Anim Sci. 2000;77(SE):1-9. doi: 10.2527/jas2000.00218812007700ES0046x
  54. Guyot H, Saegerman C, Lebreton P, Sandersen C, Rollin F. Epidemiology of trace el-ements deficiencies in Belgian beef and dairy cattle herds. J Trace Elem Med Biol. 2009;23(2):116-123. doi: 10.1016/j.jtemb.2009.02.006
  55. Hartman SJ, Genther-Schroeder ON. Hansen SL. Comparison of trace mineral repletion strategies in feedlot steers to overcome diets containing high concentrations of sulfur and molybdenum. J Anim Sci. 2018;96(6):2504-2515. doi: 10.1093/jas/sky088
  56. Hashemi M. Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contents in consumed feed. Ecotoxicol Environ Saf. 2018;154:263-267.doi: 10.1016/j.ecoenv.2018.02.058
  57. Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Current Opinion in Biotechnology. 2008;19(2): 73-82. doi: 10.1016/j.copbio.2008.03.003
  58. Iannaccone M, Ianni A, Elgendy R, Martino C, Giantin M, Cerretani L, Dacasto M, Martino G. Iodine supplemented diet positively affect immune response and dairy product quality in fresian cow. Animals. 2019;9(11):866. doi: 10.3390/ani9110866
  59. Jena CK, Gupta AR, Patra RC. Osteo-dental fluorosis in cattle reared in villages on the periphery of the aluminium smelter in Odisha, India. Research report Fluoride. 2016;49(4 Pt 2):503-508.
  60. Juszczak–Czasnojć M, Tomza–Marciniak A. Ratio of selenium concentrations between soil, forage plants and blood serum of beef cattle studied in organic and conventional farms. Arch Anim Nutr. 2021;75(3):183-194. doi: 10.1080/1745039X.2021.1913930
  61. Lebedev SV, Gavrish IA, Galaktionova LV, Korotkova AM, Sizova EA. Assessment of the toxicity  of  silicon  nanooxide  in  relation  to  various  components  of  the  agrocosystem  under  the conditions  of  the  model  experiment.  Environmental Geochemistry and Health. 2019;41(2):769-782. doi: 10.1007/s10653-018-0171-3
  62. Leeson S, Namkung H, Caston L, Durosoy S, Schlegel P. Comparison of selenium levels and sources and dietary fat quality in diets for broiler breeders and layer hens. Poultry Science. 2008;87(12):2605-2612. doi: 10.3382/ps.2008-00174
  63. Liu Y, Ma YL, Zhao JM, Vazquez-Añón M, Stein HH.  Digestibility and retention of zinc, copper, manganese, iron, calcium, and phosphorus in pigs fed diets containing inorganic or organic minerals. Journal of Animal Science. 2014;92(8):3407-3415. doi: 10.2527/jas.2013-7080
  64. López-Alonso M. Trace minerals and livestock: not too much not too little. ISRN Veterinary Science. 2012;2012:704825. doi: 10.5402/2012/704825.
  65. Ly NH, Oh CH,  Joo S-W.   A   submicromolar   Cr(III)   sensor   with   a   complex   of  methionine   using   gold   nanoparticles.   Sensors   and   Actuators  B:  Chemical.  2015;219:276-282. doi: 10.1016/j.snb.2015.04.130
  66. Ma YL, Zanton GI, Zhao J, Wedekind K, Escobar J, Vazquez-Añón M. Multitrial analysis of the effects of copper level and source on perfor-mance in nursery pigs. Journal of Animal Science. 2015;93(2):606-614. doi: 10.2527/jas.2014-7796
  67. Mackenzie JS, Jeggo M. The one health approach—Whyis it so important? Trop Med Infect Dis. 2019;4(2):88. doi: 10.3390/tropicalmed4020088
  68. Mantovani A, Maranghi F, Purificato I, Macrì A. Assessment of feed additives and contaminants: an essential component of food safety. Ann Ist Super Sanita. 2006;42(4):427-32.
  69. Marques RS, Cooke RF, Rodrigues MC, Cappellozza BI, Mills RR, Larson CK, Moriel P, Bohnert DW. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. J Anim Sci. 2016;94(3):1215-1226. doi: 10.2527/jas.2015-0036
  70. McDowell LR. Minerals in Animal and Human Nutrition. Elsevier: Amsterdam, The Netherlands, 2003;644 p.
  71. Meng T, Gao L, Xie C, Xiang Y, Huang Y, Zhang Y, Wu X. Manganese methionine hydroxy analog chelated affects growth performance, trace element deposition and expression of related transporters of broilers. Animal Nutrition. 2021;7(2):481-487. doi: 10.1016/j.aninu.2020.09.005
  72. Miller MD, Lanier JS, Kvidera SK, Dann HM, Ballard CS, Grant RJ. Evaluation of source of corn silage and trace minerals on lactational performance and total tract nutrient digestibil-ity of Holstein cows. J. Dairy Sci. 2020;103(4):3147-3160. doi: 10.3168/jds.2019-17716
  73. Min YN, Liu FX, Qi X, Ji S, Ma SX, Liu X, Wang ZP, Gao YP. Effects of methionine hydroxyl analog  chelated  zinc  on  laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poultry Science. 2018;97(10):3587-3593. doi: 10.3382/ps/pey203
  74. Miranda M, Pereira V, Carbajales P, López-Alonso M. Importance of breed aptitude (beef or dairy) in determining trace element concentrations in bovine muscles. Meat Sci. 2018;145:101-106. doi: 10.1016/j.meatsci.2018.06.005
  75. Mohseni M, Park G-H, Lee J-H, Okorie OE, Browdy C, Bharadwaj A, Bai SC. Eval-uation of toxicity  of  dietary chelated copper in juvenile Olive Flounder, Paralichthys olivaceus, based on growth and tissue copper concentra-tion. Journal of the World Aquaculture Society. 2012;43(4):548-559. doi: 10.1111/j.1749-7345.2012.00583.x
  76. National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed. Washington, DC: The National Academies Press; 2016:494. doi:10.17226/19014
  77. National Research Council. Nutrient Requirements of Beef Cattle. 6th ed. USA, DC, Washington: The National Academies Press; 1984:63 р. doi: 10.17226/19398
  78. National Research Council. Nutrient Requirements of Beef Cattle. 7th ed., update 2000. USA, DC, Washington: The National Academies Press; 1996:248 р. doi: 10.17226/9791
  79. Nawrocka A, Durkale M, Szkoda J, Filipek A, Kmiecik M, Żmudzki J, Posyniak A. Total mercury levels in the muscle and liver of livestock and game animals in Poland, 2009-2018. Chemosphere. 2020;258:127311. doi: 10.1016/j.chemosphere.2020.127311
  80. Naz S, Idris M,   Khalique MA,   Zia Ur R,   Alhidary IA,   Abdelrahman MM,   et al. The  activity   and  use  of  zinc  in  poultry  diets. Worlds  Poultry  Sci  J. 2016;1(2):159-167. doi: 10.1017/S0043933915002755
  81. Nechitailo KS, Sizova EA, Shoshin DE.Concentration of trace elements in liver of broilerschickens after use of multienzyme feed composition in the diet. Trace Elements and Electrolytes. 2021;38(3):150.
  82. Nemec LM, Richards JD, Atwell CA, Diaz DE, Zanton GI, Gressley TF. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. Journal of Dairy Science. 2012;95(8):4568-4577. doi: 10.3168/jds.2012-5404
  83. Niemann H, Kuhla B,  Flachowsky G. Perspectives for feed-efficient animal production. J Anim Sci. 2011;89(12):4344-4363. doi: 10.2527/jas.2011-4235
  84. Nocek JE, Socha MT, Tomlinson DJ. The effect of trace mineral fortification level and source on performance of dairy cattle. J Dairy Sci. 2006;89(7):2679-2693. doi: 10.3168/jds.S0022-0302(06)72344-X
  85. Orisakwe OE, Oladipo OO, Ajaezi GC, Udowelle NA. Horizontal and ver-tical distribution of heavy metals in farm produce and livestock around lead-contaminated goldmine in dareta and abare, Zamfara State, Northern Nigeria. J Environ Public Health. 2017;2017:3506949. doi: 10.1155/2017/3506949
  86. Osorio JS, Trevisi E, Li C, Drackley JK, Socha MT, Loor JJ. Supplementing Zn, Mn, and Cu from  amino  acid  complexes  and  Co  from  cobalt  glucoheptonate  during the peripartal period benefits postpartal cow performance and blood neutrophil function. J Dairy Sci. 2016;99(3):1868-1883. doi: 10.3168/jds.2015-10040
  87. Pandey AK, Kumar P,  Saxena MJ.  Feed  additives  in  animal  health.  In: Gupta R, Srivastava  A, Lall R,  editors.  Nutraceuticals  in  Veterinary  Medicine.  Springer, Cham; 2019:345-362. doi: 10.1007/978-3-030-04624-8_23
  88. Połatajko A, Śliwka-Kaszyńska M, Dernovics M, Ruzik R, Ruiz-Encinar J, Szpunar J. A systematic approach to selenium speciation in selenized yeast. J Anal At Spectrom. 2004;19(1):114-120. doi: 10.1039/b308756p
  89. Rao SVR, Raju MVLN, PandaAK, Poonam NS, Murthy OK, Sunder GS. Effect of  dietary   supplementation   of   organic   chromium   on   performance,   carcass   traits,   oxidative  parameters  and immune  responses  in  commercial  broiler  chickens. Bio  Trace  Elem  Res. 2012;147(1-3):135-141. doi: 10.1007/s12011-011-9314-4
  90. Rider SA, Davies SJ, Jha AN, Clough R, Sweetman JW. Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. J Anim Physiol Anim Nutr (Berl). 2010;94(1):99-110. doi: 10.1111/j.1439-0396.2008.00888.x
  91. Skalny AV, Salnikova EV, Burtseva TI, Skalnaya MG, Tinkov AA. Zinc, copper, cadmium, and lead levels in cattle tissues in relation to different metal levels in ground water and soil. Sci Pollut Res. 2019;26(1):559-569. doi: 10.1007/s11356-018-3654-y
  92. Spears JW. Trace mineral bioavailability in ruminants. J Nutr. 2003;133(5):1506S-1509S. doi: 10.1093/jn/133.5.1506S
  93. Stangl GI, Schwarz FJ, Kirchgessner M. Moderate long-term cobalt-deficiency affects liver, brain and erythrocyte lipids and lipoproteins of cattle. Nutrition Research. 1999;19(3):415-427.
  94. Stangl GI, Schwarz FJ, Müller H, Kirchgessner M. Evaluation of the cobalt requirement of beef cattle based on vitamin B12, folate, homocysteine and methylmalonic acid. Br J Nutr. 2000;84(5):645-653. doi: 10.1017/s0007114500001987
  95. Suganya T, Varman M, Masjuki HH, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews. 2016;55:909-941. doi: 10.1016/j.rser.2015.11.026
  96. Sukhanova SF, Uskov GE, Lushnikov NA. Use of a mineral additive in cattle feeding. IOP Conf. Ser.: Earth Environ. Sci. 2019;341:012055. doi: 10.1088/1755-1315/341/1/012055
  97. Sun Q, Guo Y, Li J, Zhang T, Wen J. Effects of methionine hydroxy analog chelated Cu/Mn/Zn on laying performance, egg quality, enzyme activity and mineral retention of laying hens. The Journal of Poultry Science. 2012;49(1):20-25. doi: 10.2141/jpsa.011055
  98. Suttle NF. Mineral nutrition of livestock, 4th edition. UK, Wallingford: CABI; 2010:579.
  99. Thornton PK. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1554):2853-2867. doi: 10.1098/rstb.2010.0134
  100. Tiffany ME, Fellner V, Spears JW. Influence of cobalt concentration on vitamin B12 production and fermentation of mixed ruminal microorganisms grown in continuous culture flow-through fermentors. J Anim Sci. 2006;84(3):635-640. doi: 10.2527/2006.843635x
  101. Тorres CA, Korver DR. Influences of trace mineral nutrition and ma-ternal flock age on broiler embryo bone development. Poult Sci. 2018;97(8):2996-3003. doi: 10.3382/ps/pey136
  102. Underwood EJ, Mertz W. Introduction. In: Mertz W, editor. Trace Elements in Human and Animal Nutrition. San Diego: Academic Press; 1987:1-19.
  103. Wang C, Liu Q, Yang WZ, Dong Q, Yang XM, He DC, Zhang P, Dong KH, Huang YX. Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livest Sci. 2009;126(1-3):239-244. doi: 10.1016/j.livsci.2009.07.005
  104. Wang F, Li SL, Xin J, Wang YJ, Cao ZJ, Guo FC, Wang YM. Ef-fects of methionine hydroxy copper supplementation on lactation performance, nutrient digestibility, and blood biochemical parameters in lactating cows. Journal of Dairy Science. 2012;95(10):5813-5820. doi: 10.3168/jds.2011-4182
  105. Whitehurst WA, Paterson JA, Harbac MM, Petersen MK, Duff GC, Geary TW, Zanton GI and Wistuba TJ. Comparison of methionine hydroxy analogue chelated versus sulfate forms of copper, zinc, and manganese on growth performance and pregnancy rates in yearling beef replacement heifers. The Professional Animal Scientist. 2014;30(1):62-67. doi: 10.15232/S1080-7446(15)30084-X
  106. Windisch W, Fahn C,  Brugger D,  Deml M,  Buffler M. Strategies for sustainable animal nutrition. Züchtungskunde. 2013;85(1):40-53.
  107. Wu X, Yao J, Yang Z, Yue W, Ren Y, Zhang C, Liu X, Wang H, Zhao X, Yuan S, Wang Q, Shi L, Shi L. Improved fetal hair follicle development by maternal supplement of selenium at nano size (Nano-Se). Livestock Science. 2011;142(1-3):270-275. doi:10.1016/j.livsci.2011.08.005
  108. Yatoo MI, Saxena A, Deepa P, Habeab BP. Role of trace elements in animals: a review. Veterinary World. 2013;6(12):963-967. doi: 10.14202/vetworld.2013.963-967
  109. Yazdankhah S, Rudi K, Bernhoft A. Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis. 2014;25:25862. doi: 10.3402/mehd.v25.25862
  110. Yuan J, Xu Z, Huang C, Zhou S, Guo Y. Effect of dietary Mintrex-Zn/Mn on per-formance, gene  expression  of  Zn  transfer  proteins,  activities  of  Zn/Mn  related  enzymes  and  fecal mineral  excretion  in  broiler  chickens. Animal  Feed Science and Technology. 2011;168(1–2):72-79. doi: 10.1016/j.anifeedsci.2011.03.011
  111. Zhao J, Allee G, Gerlemann G, Ma L, Gracia MI, Parker D, Vazquez-Anon M, Harrell RJ. Effects of a chelated copper as growth promoter on perfor-mance and carcass traits in pigs. Asian Australasian Journal of Animal Science. 2014;27(7):965-973. doi: 10.5713/ajas.2013.13416
 

Information about the authors:

Anastasia P Ivanishcheva, postgraduate student, specialist technician of the Testing Center of the Central Common Use Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-843-5822.

Elena A Sizova, Dr. Sci. (Biology), Head of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 January St., Orenburg, 460000; Professor of the Department of Biology and Soil Science, Orenburg State University, 13 Pobedy Ave., Orenburg, 460018, tel.: 8-912-344-99-07.

Ayna M Kamirova, Cand. Sci. (Biology), Researcher of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-548-44-89.

Lera L Musabayeva, applicant Researcher of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-912-343-59-85.

Maxim V Solovyov, Master's student 2 courses, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000.

 

The article was submitted 17.04.2023; approved after reviewing 11.05.2023; accepted for publication 13.06.2023.

Download