Marina Ya Kurilkina, Shamil G Rakhmatullin, Tatyana A Klimova, Dmitry G Deryabin, Georgy I Levakhin

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 3. Р. 92-109.

 

Review article

Safety assessment of the use of phytochemicals during in vitro, in vivo experiments

and animal husbandry (review)

 

Marina Ya Kurilkina1, Shamil G Rakhmatullin2, Tatyana A Klimova3, Dmitry G Deryabin4

Georgy I Levakhin5

1,2,3,4,5Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1k_marina4@mail.ru, https://orcid.org/0000-0003-0253-7867

2shahm2005@mail.ru, https://orcid.org/0000-0003-0143-9499

3klimovat91@mail.ru, https://orcid.org/0000-0003-4298-1663

4deryabin@cnikvi.ru, https://orcid.org/0000-0002-2495-6694

5Levakhing@internet.ru, https://orcid.org/0000-0002-8686-2183

Abstract. In view of the prohibition of antibacterial feed additives used in livestock farming at sub-inhibitory doses to increase productivity and prevent diseases, the need to develop new alternative substances has arisen. In Russia, this was facilitated by the Russian Federation Government Order No. 2045-r on the adoption of the "Strategy for the Prevention of Antimicrobial Resistance in the Russian Federation for the period up to 2030" (2017).

Possible non-antibiotic strategies for livestock production include the active use of probiotics and phytochemicals. At the same time, it is essentially important that plant compounds do not simply duplicate the action of antibiotics (with inherent negative effects associated with "selective pressure" on bacterial populations and the accompanying development of antibiotic resistance), but realize fundamentally different, not yet studied mechanisms of biological activity. One such mechanism is the participation of plant compounds in density-dependent communication processes in bacteria, often referred to by the term "quorum sensing" (QS). The utilization of various phytochemicals for safe agricultural products is supported by recent studies on the use of secondary metabolites (e.g. phenolic compounds, alkaloids, saponins, terpenoids, carotenoids, and quinones), etc. Promising substances for further research were identified, and a literature review was conducted to assess their safe use.

Keywords: phytochemicals, coumarin derivatives, vanillin, vanillic acid, gamma lactone, quercetin, alkylresorcinols

Acknowledgments: the work was performed in accordance to the plan of research works for 2023-2025 FSBRI FRC BST RAS (No. FNWZ-2022-0010).

For citation: Kurilkina MYa, Rakhmatullin ShG, Klimova TA, Deryabin DG, Levakhin GI. Safety assessment of the use of phytochemicals during in vitro, in vivo experiments and animal husbandry (review). Animal Husbandry and Fodder Production. 2023;106(3):92-109. (In Russ.). https://doi.org/10.33284/2658-3135-106-3-92

 

 References

 
  1. Inchagova KS. Application of quercetin hydrate and trans-cinnamaldehyde as inhibitors of LuxI/LuxR-type "quorumsensing" in bacteria (Conference proceedings) Symbiosis-Russia 2020: Collection of articles. XII All-Russian Congress of Young Scientists-Biologists with International Participation, (Perm', 28-30 September 2020). Perm': Perm State University; 2020:106-108.
  2. Inchagova KS, Duskaev GK, Deryabin DG. Gamma-lactones effects on growth and chemical communication in Chromobacterium subtsugae. Problems of biological, medical and pharmaceutical chemistry. 2022;25(10):38-43. doi: 10.29296/25877313-2022-10-05
  3. Inchagova KS, Duskaev GK, Deryabin DG. Quorum sensing in Chromobacterium subtsugae (previously – c. violaceum) is inhibited by gamma-lactones, the minor components of eucalyptus leaf extract. Microbiologiya. 2023;92(1):47-56. doi: 10.31857/S0026365622600626
  4. Deryabin DG, Tolmacheva AA. Composition based on phytoextracts that suppresses the sense of quorum in bacteria: pat. 2542464 Russian Federation. Application 23.10.2013; Date of publication 20.02.2015, Bul. № 5.
  5. Deryabin DG, Tolmacheva AA, Inchagova KS. The use of coumarin and its derivatives as inhibitors of the "quorum sensing" LuxI/LuxR type in bacteria: pat. 2616237 Russian Federation. Application 12.02.2015; Date of publication 13.04.2017, Bul. № 11.
  6. Deryabin DG, Tolmacheva AA. The use of 1,3-benzodioxol derivatives as regulators of collective behavior (quorum sensing) in bacteria: pat. 2514001 Russian Federation. Application 20.07.2012; Date of publication 27.04.2014, Bul. № 12.
  7. Decree of the Government of the Russian Federation of September 25, 2017 № 2045-r (as amended on September 11, 2021) “On Approval of the Strategy for Preventing the Spread of Antimicrobial Resistance in the Russian Federation”.
  8. Deryabin DG, Tolmacheva AA. Regulator of collective behavior ("quorum sensing") in bacteria: pat. 2534617 Russian Federation. Application 21.09.2012; Date of publication 27.11.2014, Bul. № 33.
  9. Deryabin G, Galadzhieva AA, Inchagova KS, Duskaev GK. Method of using gamma-octalactone as an inhibitor of "quorum sensing" system LuxI/LuxR type in bacteria: pat. 2691634 Russian Federation. Application 27.11.2017; Date of publication 17.06.2019, Bul. № 17.
  10. Abdel-Latif MA, Elbestawy AR, El-Far AH, Noreldin AE, Emam M, Baty RS, Albadrani GM, Abdel-Daim MM, Abd El-Hamid HS. Quercetin dietary supplementation advances growth performance, gut microbiota, and intestinal mRNA expression genes in broiler chickens. Animals (Basel). 2021;11(8):2302. doi: 10.3390/ani11082302
  11. Al-Haidari RA, Shaaban MI,  Ibrahim SRM,  Mohamed GA.  Anti-quorum  sensing  activity of some medicinal plants. Afr J Tradit Complement Altern Med. 2016;13(5):67-71. doi: 10.21010/ajtcam.v13i5.10
  12. Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, Lampen A. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62(1):1700447. doi: 10.1002/mnfr.201700447
  13. Api AM, Belmonte F, Belsito D, Biserta S, Botelho D, Bruze M, Burton GA Jr, Buschmann J, Cancellieri MA,  Dagli ML,  Date M,  Dekant W,  Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, Lapczynski A, Lavelle M, Liebler DC, Na M, O'Brien D, Patel A, Penning TM, Ritacco G, Rodriguez-Ropero F,  Romine J,  Sadekar N,  Salvito D,  Schultz TW,  Sipes IG,  Sullivan G, Thakkar Y, Tokura Y, Tsang S. RIFM fragrance ingredient safety assessment, γ-octalactone, CAS Registry Number 104-50-7. Food Chem Toxicol. 2019;134(2):110839. doi: 10.1016/j.fct.2019.110839
  14. Api AM, Belsito D,  Bruze M,  Cadby P,  Calow P,  Dagli ML,  Dekant W,  Ellis G,  Fryer AD, Fukayama M, Griem P, Hickey C, Kromidas L, Lalko JF, Liebler DC, Miyachi Y, Politano VT, Renskers K, Ritacco G, Salvito D, Schultz TW, Sipes IG, Smith B, Vitale D, Wilcox DK. Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients. Food Chem Toxicol. 2015;82:S1-S19. doi: 10.1016/j.fct.2014.11.014
  15. Bennetau-Pelissero C. Risks and benefits of phytoestrogens: where are we now? Curr Opin Clin Nutr Metab Care. 2016;19(6):477-483. doi: 10.1097/MCO.0000000000000326
  16. Bhardwaj AK, Vinothkumar K, Rajpara N. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Patents on Anti-Infective Drug Discovery. 2013;8(1):68-83. doi: 10.2174/1574891x11308010012
  17. Bouarab Chibane L, Degraeve P,  Ferhout H,  Bouajila J,  Oulahal N.  Plant  antimicrobial  polyphenols  as  potential  natural  food    J  Sci  Food  Agric.  2019;99(4):1457-1474. doi: 10.1002/jsfa.9357
  18. Burri SCM, Ekholm A, Bleive U, Püssa T, Jensen M, Hellström J, Mäkinen S, Korpinen R, Mattila PH, Radenkovs V, Segliņa D, Hakansson A, Rumpunen K, Tornberg E. Lipid oxidation inhibition capacity of plant extracts and powders in a processed meat model system. Meat Sci. 2020;162:108033. doi: 10.1016/j.meatsci.2019.108033
  19. Cáceres M, Hidalgo W, Stashenko E, Torres R, Ortiz C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics (Basel). 2020;9(4):147. doi: 10.3390/antibiotics9040147
  20. Camele I, Elshafie HS, Caputo L, De Feo V. Anti-quorum sensing and antimicrobial effect of mediterranean plant essential oils against phytopathogenic bacteria. Front Microbiol. 2019;10:2619. doi: 10.3389/fmicb.2019.02619
  21. Cava-Roda R, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB, Marín-Iniesta F. Synergistic antimicrobial activities of combinations of vanillin and essential oils of cinnamon bark, cinnamon leaves, and cloves. Foods. 2021;10(6):1406. doi: 10.3390/foods10061406
  22. Cruz LF, Figueiredo GF, Pedro LP, Amorin YM, Andrade JT, Passos TF, Rodrigues FF, Souza ILA, Gonçalves TPR, Dos Santos Lima LAR, Ferreira JMS, Araújo MGF. Umbelliferone (7-hydroxycoumarin): A non-toxic antidiarrheal and antiulcerogenic coumarin. Biomed Pharmacother. 2020;129:110432. doi: 10.1016/j.biopha.2020.110432
  23. Defoirdt T. Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol. 2018;26(4):313-328. doi: 10.1016/j.tim.2017.10.005
  24. Department of Health and Human Services.Food and Drug Administration. 21 CFR Parts 514 and 558 [Docket No. FDA–2010–N–0155] RIN 0910–AG95.Veterinary Feed Directive; Final Rule. Federal Register. 2015;80(106):31708-31735.
  25. Deryabin D, Inchagova K, Rusakova E, Duskaev G. Coumarin’s anti-quorum sensing activity can be enhanced when combined with other plant-derived small molecules. Molecules. 2021;26(1):208. doi: 10.3390/molecules26010208
  26. Deryabin DG, Kosyan DB, Inchagova KS, Duskaev GK. Plant-derived quorum sensing inhibitors (quercetin, vanillin and umbelliferon) modulate cecal microbiome, reduces inflammation and affect production efficiency in broiler chickens. Microorganisms. 2023;11(5):1326. doi: 10.3390/microorganisms11051326
  27. Di Pierro F, Derosa G, Maffioli P, Bertuccioli A, Togni S, Riva A, Allegrini P, Khan A, Khan S, Khan BA, Altaf N, Zahid M, Ujjan ID, Nigar R, Khushk MI, Phulpoto M, Lail A, Devrajani BR, Ahmed S. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study. Int J Gen Med. 2021;14:2359-2366. doi: 10.2147/IJGM.S318720
  28. Dong Y, Lei J, Zhang B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult Sci. 2020;99(10):4892-4903. doi: 10.1016/j.psj.2020.06.028
  29. Drouillard JS. Current situation and future trends for beef production in the United States of America – A review. Asian-Australas J Anim Sci. 2018;31(7):1007- doi: 10.5713/ajas.18.0428
  30. Duskaev G, Kurilkina M, Zavyalov O. Growth-stimulating and antioxidant effects of vanillic acid on healthy broiler chickens. Vet World. 2023;16(3):518-525. doi: 10.14202/vetworld.2023.518-525
  31. Duskaev GK, Deryabin DG, Karimov IF, Kosyan DB, Notova SV. Assessment of (in vitro) toxicity of quorum-sensing inhibitor molecules of Quercus Cortex. Journal of Pharmaceutical Sciences and Research. 2018a;10(1):91-95.
  32. Duskaev GK, Kazachkova NM, Ushakov AS, Nurzhanov BS, Rysaev AF. The effect of purified Quercus cortex extract on biochemical parameters of organism and productivity of healthy broiler chickens. Veterinary World. 2018b;11(2):235-239. doi: 10.14202/vetworld.2018.235-239
  33. Duskaev GK, Kvan OV, Rakhmatullin SG. Eucalyptus viminalis leaf extract alters the productivity and blood parameters of healthy broiler chickens. Vet World. 2020;13(12):2673-2680. doi: 10.14202/vetworld.2020.2673-2680
  34. Efenberger-Szmechtyk M, Nowak A, Czyzowska A. Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products. Crit Rev Food Sci Nutr. 2021;61(1):149-178. doi: 10.1080/10408398.2020.1722060
  35. EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Bampidis V,  Azimonti G,  Bastos ML,  Christensen H,  Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Anguita M, Galobart J, Holczknecht O, Tarrés-Call J, Pettenati E, Pizzo F, Manini P. Safety and efficacy of AviPlus® as a feed additive for turkeys for fattening, turkeys reared for breeding and suckling piglets. EFSA J. 2019;17(7):e05795. doi: 10.2903/j.efsa.2019.5795
  36. Esatbeyoglu T, Rimbach G. Canthaxanthin: From molecule to function. Mol Nutr Food Res. 2017;61(6):1600469. doi: 10.1002/mnfr.201600469
  37. Flythe MD. The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Lett Appl Microbiol. 2009;48(6):712-717. doi: 10.1111/j.1472-765X.2009.02600.x
  38. Frankos VH, Schmitt DF, Haws LC, McEvily AJ, Iyengar R, Miller SA, Munro IC, Clydesdale FM, Forbes AL, Sauer RM. Generally recognized as safe (GRAS) evaluation of 4-hexylresorcinol for use as a processing aid for prevention of melanosis in shrimp. Regul Toxicol Pharmacol. 1991;14(2):202-212. doi: 10.1016/0273-2300(91)90007-i
  39. Giri SS, Sukumaran V, Park SC. Effects of bioactive substance from turmeric on growth, skin mucosal immunity and antioxidant factors in common carp, Cyprinus carpio. Fish Shellfish Immunol. 2019;92:612-620. doi: 10.1016/j.fsi.2019.06.053
  40. Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS One. 2017;12(5):e0177675. doi: 10.1371/journal.pone.0177675
  41. Guo PJ, Lin ZJ, Zhang XM, Zou LN, Guo FF, Zhang B. Toxicological research and safety consideration of coumarins. Zhongguo Zhong Yao Za Zhi. 2020;45(3):518-522. doi: 10.19540/j.cnki.cjcmm.20190827.401
  42. Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019;2019:2015978. doi: 10.1155/2019/2015978
  43. Kim SG. 4-Hexylresorcinol: pharmacologic chaperone and its application for wound healing. Maxillofac Plast Reconstr Surg. 2022;44(1):5. doi: 10.1186/s40902-022-00334-w
  44. Koné AP, Desjardins Y, Gosselin A, Cinq-Mars D, Guay F, Saucier L. Plant extracts and essential oil product as feed additives to control rabbit meat microbial quality. Meat Sci. 2019;150:111-121. doi: 10.1016/j.meatsci.2018.12.013
  45. Langi P, Kiokias S, Varzakas T, Proestos C. Carotenoids: from plants to food and feed industries. Methods Mol Biol. 2018;1852:57-71. doi: 10.1007/978-1-4939-8742-9_3
  46. Li Z, Kong D, Liu Y, Li M. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes Dis. 2022;9(1):80-94. doi: 10.1016/j.gendis.2021.03.007
  47. Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology. 2023;31(4):1731-1750. doi: 10.1007/s10787-023-01256-3
  48. Liu HN, Liu Y, Hu LL, Suo YL, Zhang L, Jin F, Feng XA, Teng N, Li Y. Effects of dietary supplementation of quercetin on performance, egg quality, cecal microflora populations, and antioxidant status in laying hens. Poult Sci. 2014;93(2):347-353. doi: 10.3382/ps.2013-03225
  49. Liu J, Fu Y, Zhou S, Zhao P, Zhao J, Yang Q, Wu H, Ding M, Li Y. Comparison of the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora  in laying hens during the late laying period. Poult Sci. 2023;102(6):102674. doi: 10.1016/j.psj.2023.102674
  50. Michalak I, Chojnacka K, Saeid A. Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical CO₂ algal extracts. Molecules. 2017;22(1):66. doi: 10.3390/molecules22010066
  51. Mirza AC, Panchal SS. Safety assessment of vanillic acid: subacute oral toxicity studies in wistar rats. Turk J Pharm Sci. 2020;17(4):432-439. doi: 10.4274/tjps.galenos.2019.92678
  52. Nikolaev YA, Tutel'yan AV, Loiko NG, Buck J, Sidorenko SV, Lazareva I, Gostev V, Manzen'yuk OY, Shemyakin IG, Abramovich RA, Huwyler J, El'-Registan GI. The use  of  4-Hexylresorcinol  as  antibiotic    PLoS One.  2020;15(9):e0239147. doi: 10.1371/journal.pone.0239147
  53. Osaili TM, Al-Nabulsi AA, Hasan F, Dhanasekaran DK, Hussain AZS, Cheikh Ismail L, Naja F, Radwan H, Faris ME, Olaimat AN, Ayyash M, Obaid RS, Holley R. Effect of eugenol, vanillin, and β-Resorcylic acid on foodborne pathogen survival in marinated camel meat. J Food Prot. 2023;86(2):100038. doi: 10.1016/j.jfp.2023.100038
  54. Poutaraud A, Michelot-Antalik A, Plantureux S. Grasslands: a source of secondary metabolites for livestock health. J Agric Food Chem. 2017;65(31):6535-6553.doi: 10.1021/acs.jafc.7b00425
  55. Samii SS, Wallace N, Nagaraja TG, Engstrom MA, Miesner MD, Armendariz CK, Titgemeyer EC. Effects of limonene on ruminal concentrations, fermentation, and lysine degradation in cattle. J Anim Sci. 2016;94(8):3420-3430. doi: 10.2527/jas.2016-0455
  56. Samuelson KL, Hubbert ME, Galyean ML, Löest CA. Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. J Anim Sci. 2016;94(6):2648-2663. doi: 10.2527/jas.2016-0282
  57. Sierżant K, Korzeniowska M, Półbrat T, Rybarczyk A, Smoliński J. The use of an optimised concentration of quercetin limits peroxidation of lipids in the meat of broiler chickens fed a diet containing flaxseed oil rich in omega-3. Animal. 2022;16(8):100603. doi: 10.1016/j.animal.2022.100603
  58. Sinha S, Singh K, Ved A, Hasan SM, Mujeeb S. Therapeutic journey and recent advances in the synthesis of coumarin derivatives. Mini Rev Med Chem. 2022;22(9):1314-1330. doi: 10.2174/1389557521666211116120823
  59. Sood V, Tian W, Narvaez-Bravo C, Arntfield SD, González AR. Plant extracts effectiveness to extend bison meat shelf life. J Food Sci. 2020;85(4):936-946. doi: 10.1111/1750-3841.15062
  60. Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules. 2023;28(4):1845. doi: 10.3390/molecules28041845
  61. Tiwary BK, Ghosh R,  Moktan S,  Ranjan VK, Dey P, Choudhury D, Dutta S, Deb D, Das AP, Chakraborty R. Prospective bacterial quorum sensing inhibitors from Indian medicinal plant extracts. Lett Appl Microbiol. 2017;65(1):2-10. doi: 10.1111/lam.12748
  62. Torki M, Schokker D,  Duijster-Lensing M, Van Krimpen MM. Effect of nutritional interventions with quercetin, oat hulls, β-glucans, lysozyme and fish oil on performance and health status related parameters of broilers chickens. Br Poult Sci. 2018;59(5):579-590. doi: 10.1080/00071668.2018.1496402
  63. Valero MV, do Prado RM, Zawadzki F,Eiras CE. Propolis and essential oils additives in the diets improved animal performance and feed efficiency of bulls finished in feedlot. Acta Sci Anim Sci. 2014;36(4):419-426. doi: 10.4025/actascianimsci.v36i4.23856
  64. Wang S, Yao J, Zhou B, Yang J, Chaudry MT, Wang M, Xiao F, Li Y, Yin W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot. 2018;81(1):68-78. doi: 10.4315/0362-028X.JFP-17-214
  65. Wu Z, Geng Y, Buist-Homan M, Moshage H. Scopoletin and umbelliferone protect hepatocytes against palmitate- and bile acid-induced cell death by reducing endoplasmic reticulum stress and oxidative stress. Toxicol Appl Pharmacol. 2022;436:115858. doi: 10.1016/j.taap.2021.115858
  66. Wu Z, Tan B, Liu Y, Dunn J, Martorell Guerola P, Tortajada M, Cao Z, Ji P. Chemical composition and antioxidant properties of essential oils from peppermint, native spearmint and scotch spearmint. Molecules. 2019;24(15):2825. doi: 10.3390/molecules24152825
  67. Xu B, Qin W, Xu Y, Yang W, Chen Y, Huang J, Zhao J, Ma L. Dietary quercetin supplementation attenuates diarrhea and intestinal damage by regulating gut microbiota in weanling piglets. Oxid Med Cell Longev. 2021;2021:6221012. doi: 10.1155/2021/6221012
  68. Yamada T, Katsutani N,  Maruyama T,  Kawamura T,  Yamazaki H,  Murayama N, Tong W, Yamazoe Y, Hirose A. Combined risk assessment of food-derived coumarin with in Silico approaches. Food Saf (Tokyo). 2022;10(3):73-82. doi: 10.14252/foodsafetyfscj.D-21-00015
  69. Yang WZ, Ametaj BN, Benchaar C, He ML, Beauchemin KA. Cinnamaldehyde in feedlot cattle diets: intake, growth performance, carcass characteristics, and blood metabolites. J Anim Sci. 2010a;88(3):1082-1092. doi: 10.2527/jas.2008-1608
  70. Yang WZ, Benchaar C, Ametaj BN, Beauchemin KA. Dose response to eugenol supplementation in growing beef cattle: Ruminal fermentation and intestinal digestion. Anim Feed Sci Technol. 2010b;158(1-2):57- doi: 10.1016/j.anifeedsci.2010.03.019
  71. Yi D, Fang Q,  Hou Y,  Wang L,  Xu H,  Wu T,  Gong J,  Wu G.  Dietary   supplementation with  oleum  cinnamomi  improves  intestinal  functions  in    Int  J  Mol  Sci. 2018;19(5):1284. doi: 10.3390/ijms19051284
  72. Younts-Dahl SM, Galyean ML, Loneragan GH, Elam NA, Brashears MM. Dietary supplementation with Lactobacillus-Propionibacterium-based direct-fed with microbials and prevalence of Escherichia coliO157 in beef feedlot cattle and on hides at harvest. J Food Prot. 2004;67(5):889-893. doi: 10.4315/0362-028x-67.5.889
  73. Zabolotneva AA, Shatova OP, Sadova AA, Shestopalov AV, Roumiantsev SA. An overview of alkylresorcinols biological properties and effects. J Nutr Metab. 2022;2022:4667607. doi: 10.1155/2022/4667607
  74. Zavyalov O, Duskaev G, Kurilkina M. Effect of feeding bioactive compounds identified from plant extracts (4-hexylresorcinol, 7-hydroxycoumarin, and gamma-octalactone) on the productivity and quality of broiler meat. Vet World. 2022;15(12):2986-2996. doi: 10.14202/vetworld.2022.2986-2996
  75. Zhou M, Jing JH, Mao RH, Guo J, Wang ZP. Applications of metabonomics in animal genetics and breeding. YiChuan. 2019;41(2):111-124. doi: 10.16288/j.yczz.18-226
 

Information about the authors:

Marina Ya Kurilkina, Cand. Sci. (Biology), Senior Researcher of the Testing Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8(3532)77-39-97.

Shamil G Rakhmatullin, Cand. Sci. (Biology), Senior Researcher of the Department of Feeding Farm Animals and Feed Technology named after S.G. Leushin, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 89228157225.

Tatyana A Klimova, Head of the Laboratory of Microbiology of the Testing Center of the Central Collective Use Center, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: +79878494166.

Dmitry G Deryabin, Dr. Sci. (Medical), Professor, Head of the Laboratory of Breeding and Genetic Research in Animal Husbandry, Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8(3532)30-81-79.

Georgy I Levakhin, Dr. Sci. (Biology), Professor, Chief Researcher of the Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8(3532)30-81-79.

The article was submitted 14.08.2023; approved after reviewing 26.08.2022; accepted for publication 11.09.2023.

Download