Daniil E Shoshin, Elena A Sizova, Ayna M Kamirova, Anastasia P Ivanishcheva

Animal Husbandry and Fodder Production. 2024. Vol. 107, no. 1. Р. 8-21.

 

doi:10.33284/2658-3135-107-1-8

 

Original article

Ultrafine particles of Co3O4 and Mn2O3 as effectors of rumen digestion in vitro

 

Daniil E Shoshin1,5, Elena A Sizova2,6, Ayna M Kamirova3, Anastasia P Ivanishcheva4

1,2,3,4 Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

5,6Orenburg State University, Orenburg, Russia

1,5daniilshoshin@mail.ru, https://orcid.org/0000-0003-3086-681X

2,6sizova.l78@yandex.ru, https://orcid.org/0000-0002-5125-5981

3ayna.makaeva@mail.ru, https://orcid.org/0000-0003-1474-8223

4nessi255@mail.ru, https://orcid.org/0000-0001-8264-4616

 

Abstract. The prospects for the use of ultrafine particles (UFP) Co3O4 and Mn2O3 in feeding farm animals are outlined. The digestibility of wheat bran in vitro and the dynamics of volatile fatty acids and nitrogen in the rumen fluid with the introduction of various dosages of the studied substances was assessed. It has been established that UFP Co3O4 and Mn2O3 at concentrations of 0.6 and 38.6 mg/kg of feed dry matter increase the digestibility coefficient by 4.49 and 5.05%, respectively (P ≤ 0.01); simultaneously stimulate the formation of acetic, propionic and butyric acids, and increase the concentration of total and protein nitrogen, with an increase in the number of protozoa in 1 ml of ruminal contents.

Keywords: farm animals, feeding, ultrafine particles, Co3O4, Mn2O3, digestibility, volatile fatty acids, ciliates, nitrogen

Acknowledgments: the work was supported by the Russian Science Foundation, Рroject      No. 22-26-00254.

For citation: Shoshin DE, Sizova EA, Kamirova AM, Ivanishcheva AP. Ultrafine particles of Co3O4 and Mn2O3 as effectors of rumen digestion in vitro. Animal Husbandry and Fodder Production. 2024;107(1):8-21. (In Russ.). https://doi.org/10.33284/2658-3135-107-1-8

 

References

 
  1. Nurzhanov BS, Levakhin YuI, Duskaev GK, Zhaimysheva SS. Cucurbita esemenisoleum enriched effect with highly dispersion particles of manganese on the digestibility of dry substance and microbiological processes in animal rumen. Bulletin of the Kurgan State Agricultural Academy. 2020;4(36):34-37.
  2. State Standard 4-2019. Fodder, mixed fodder and raw mixed fodder. Methods of nitrogen and crude protein determination. Introduced 01.08.2020. Moscow: Standartinform; 2019:15 p.
  3. State Standard 26180-84. Determination of ammonia nitrogen content and actual acidity. Introduced 01.07.1985. Moscow: State Committee of Standards; 1984:6
  4. Koloskova EM et al. Studies of the sheep rumen microbiome using molecular genetic  methods:  a review. Problems of Productive Animal Biology. 2020;4:5-26. doi: 10.25687/1996-6733.prodanimbiol.2020.4.5-26
  5. Kamenskaya YuV. Effect of cobalt salts on vitamin B12 biosynthesis by propionic acid bacteria. Science, Technology and Education. 2019;6(59):13-15.
  6. Kamirova AM, Sizova EA. Comprehensive assessment of the influence of minerals in the ultradispersed form on rumen digestion. Perm Agrarian Journal. 2023;1(41):88-98. doi: 10.47737/2307-2873_2023_41_88
  7. Miroshnikova MS. The main representatives of the rumen microbiome (review). Animal Husbandry and Fodder Production. 2020;103(4):174-185. doi: 10.33284/2658-3135-103-4-174
  8. Il’ichev E, Nazarova A, Polishchuk S, Inozemtsev V. Diet digestibility and nutrient balance with the addition of cobalt and copper nanopowders to the calves' rations. Journal of Dairy and Beef Cattle Breeding. 2011;5:27-29.
  9. Duskaev GK et al. Results of researches on digestibility in vitro and in situ of developed feed additives. Herald of beef cattle breeding. 2016;4(96):126-131.
  10. Sheida EV, Riazanov V, Rakhmatullin ShG, Duskaev GK, Lebedev SV. Method for feeding young cattle to increase enzymatic processes in its rumen: 2784969 C1 Russian Federation. Application 14.03.2022; Date of publication. 01.12.2022, Byul. № 34.
  11. Lebedev SV, Sheida EV, Shoshina OV, Korneichenko VI. Comparative analysis of the effect of various forms of iron on the course of metabolic processes in rumen using “in vitro” method. Animal Husbandry and Fodder Production. 2023;106(1):192-202. doi: 10.33284/2658-3135-106-1-192
  12. Ulitko VE. Innovative aspects and issues of feeding farm animals. Vestnik of Ulyanovsk State Agricultural Academy. 2014;4(28):136-147
  13. Chernaya LV. Features of the life activity of endobiont ciliates in the stomach of sheep. International Journal of Applied and Fundamental Research. 2016;3(3):402-404.
  14. Sheida EV, Lebedev SV. Influence of Cr2O3 UFP on fermentation processes in rumen of ruminants in  in  vitro    Animal  Husbandry  and  Fodder  Production.  2023;106(3):8-20. doi: 10.33284/2658-3135-106-3-8
  15. Avila DS, Puntel RL, Aschner M. Manganese in health and disease. In: Sigel A, Sigel H, Sigel R, editors. Interrelations between essential metal ions and human diseases. Dordrecht: Springer. 2013;13:199-227. doi: 10.1007/978-94-007-7500-8_7
  16. Bidarkar VK, Swain PS, Ray S, Dominic G. Probiotics: Potential alternative to antibiotics in ruminant feeding. Trends in Veterinary and Animal Sciences. 2014;1(1):1-4.
  17. Bonhomme A, Durand M, Quintana C, Halpern S. Influence du cobalt et de la vitamine B12 sur la croissance et la survie des ciliés du rumen in vitro, en fonction de la population bactérienne. Reproduction Nutrition Développement. 1982;22(1A): 107-122.
  18. Bosma EF, Rau MH, van Gijtenbeek LA, Siedler S. Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiology Reviews. 2021;45(6):fuab028. doi: 10.1093/femsre/fuab028
  19. Carrillo-Carrion C, Carril M,  Parak    Techniques  for  the  experimental  investigation  of  the  protein corona. Current Opinion in Biotechnology. 2017; 46:106-113. doi: 10.1016/j.copbio.2017.02.009
  20. Chang M, Ma F, Wei J, Liu J, Nan X, Sun P. Live Bacillus subtilis natto promotes rumen fermentation by modulating rumen microbiota in vitro. Animals. 2021;11(6):1519. doi: 10.3390/ani11061519
  21. Doyle N, Mbandlwa P, Kelly WJ, Attwood G, Li Y, Ross RP, Leahy S. Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Frontiers in Microbiology. 2019;10:2207. doi: 10.3389/fmicb.2019.02207
  22. González-Montaña JR, Escalera-Valente F, Alonso AJ, Lomillos JM, Robles R, Alonso ME. Relationship between vitamin B12 and cobalt metabolism in domestic ruminant: an update. Animals. 2020;10(10):1855. doi: 10.3390/ani10101855
  23. Gresakova L, Venglovska K, Cobanova K. Nutrient digestibility in lambs supplemented with different dietary manganese sources. Livestock Science. 2018;214:282-287. doi: 10.1016/j.livsci.2018.07.001
  24. Gupta V, Kant V, Sharma AK, Sharma M. Comparative assessment of antibacterial efficacy for cobalt nanoparticles, bulk cobalt and standard antibiotics: a concentration dependant study. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):78-85. doi: 10.17586/2220-8054-2020-11-1-78-85
  25. Hoseinpour V, Ghaemi N. Green synthesis of manganese nanoparticles: Applications and future perspective – A review. Journal of Photochemistry and Photobiology B: Biology. 2018;189:234-243. doi: 10.1016/j.jphotobiol.2018.10.022
  26. Kumar V, Sharma N, Maitra SS. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters. 2017;7(4):243-256. doi: 10.1007/s40089-017-0221-3
  27. Lu H, Liu P, Liu S, Zhao X, Bai B, Cheng J, Xue Y, et al. Effects of sources and levels of dietary supplementary manganese on growing yak’s in vitro rumen fermentation. Frontiers in Veterinary Science. 2023;10:1175894. doi: 10.3389/fvets.2023.1175894
  28. Marappan G, Beulah P, Kumar RD, Muthuvel S, Govindasamy P. Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology. 2017;13(7):724-731. doi: 10.3923/ijp.2017.724.731
  29. Matuszewski A, Łukasiewicz M, Łozicki A, Niemiec J, Zielińska-Górska M, Scott A, Sawosz E. The effect of manganese oxide nanoparticles on chicken growth and manganese content in excreta. Animal Feed Science and Technology. 2020;268:114597. doi: 10.1016/j.anifeedsci.2020.114597
  30. Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Dhama K, et al. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Veterinary Quarterly. 2022;42(1):68-94. doi: 10.1080/01652176.2022.2073399
  31. Moradpoor H, Safaei M, Rezaei F, Golshah A, Jamshidy L, Hatam R, Abdullah RS. Optimisation of cobalt oxide nanoparticles synthesis as bactericidal agents. Open access Macedonian Journal of Medical Sciences. 2019; 7(17):2757-2762. doi: 10.3889/oamjms.2019.747
  32. Nagaraja TG. Microbiology of the rumen. In: Millen D, De Beni Arrigoni M, Lauritano Pacheco R, editos. Rumenology. Cham: Springer; 2016:39-61. doi: 10.1007/978-3-319-30533-2_2
  33. Ryazanov V, Tarasova E, Duskaev G, Kolpakov V, Miroshnikov I. Changes in the concentration of amino acids and bacterial community in the rumen when feeding Artemisia absinthium and cobalt chloride. Fermentation. 2023;9(8):751. doi: 10.3390/fermentation9080751
  34. Spears JW. Boron, chromium, manganese, and nickel in agricultural animal production. Biological Trace Element Research. 2019;188(1):35-44. doi: 10.1007/s12011-018-1529-1
 

Information about the authors:

Daniil E Shoshin, Postgraduate student, Laboratory Researcher of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000; Assistant at the Scientific and Educational Center «Biological Systems and Nanotechnologies», Orenburg State University, 13 Pobedy Ave., Orenburg, 460018, tel.: 8-965-932-53-67.

Elena A Sizova, Dr. Sci. (Biology), Head of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000; Professor of the Scientific and Educational Center «Biological Systems and Nanotechnologies», Orenburg State University, 13, Pobedy Ave., Orenburg, 460018, tel.: 8-912-344-99-07.

Ayna M Kamirova, Cand. Sci. (Biology), Researcher of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-548-44-89.

Anastasia P Ivanishcheva, Junior Researcher at the Testing Center of the Common Use Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-843-58-22.

 

The article was submitted 21.11.2023; approved after reviewing 10.01.2023; accepted for publication 18.03.2024.

Download