Marina S Mingazova, Elena P Miroshnikova, Azamat Е Arinzhanov, Yulia V Kilyakova

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 1. Р. 128-146.

 

doi:10.33284/2658-3135-107-1-128

Review article

General understanding of bacterial quorum sensing and use of quorum inhibitors in aquaculture

 

Marina S Mingazova1,5, Elena P Miroshnikova2, Azamat Е Arinzhanov3, Yulia V Kilyakova4

1,2,3,4Orenburg State University, Orenburg, Russia

5 Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1,5ms.mingazova@gmail.com, https://orcid.org/0000-0002-2818-1312

2elenaakva@rambler.ru, https://orcid.org/0000-0003-3804-5151

4arin.azamat@mail.ru, https://orcid.org/0000-0001-6534-7118

5fish-ka06@mail.ru, https://orcid.org/0000-0002-2385-264X

 

Abstract. The development of antibiotic resistance leads to the search for new solutions in the field of improving the quality of finished products and reducing the negative impact on the end user. Aquaculture being an actively developing industry imposes serious requirements on products, including reducing the incidence of diseases among farmed fish and reducing the use of antibiotics. Among the alternative drugs, there are various feed additives (pro-, prebiotics, phytogenic drugs) that can replace antibiotics without harm to the body of hydrobionts. A new branch is the study of quorum sensing bacteria and its effect on pathogenic organisms. Recent studies have shown that the use of quorum inhibitors can become a promising replacement for antibiotics without harm to the body and the end user. The main action of inhibitors is aimed at blocking the interaction of N-Acyl homoserine lactone with signaling receptors, which leads to inhibition of the expression of virulence-related genes. Scientists from different countries have conducted research on the effect of inhibitors on pathogenic bacteria for hydrobionts. The review presents information about quorum sensing of bacteria and general data on the study of quorum inhibitors that can become promising components in the feeding of hydrobionts.

Keywords: aquaculture, hydrobionts, fish, quorum sensing, quorum inhibitors, microbial community, pathogens

Acknowledgments: the   work   was  supported  by  the  Russian  Science   Foundation, Project No. 23-76-10054.

For citation: Mingazova MS, Miroshnikova EP, Arinzhanov AЕ, Kilyakova YuV. General understanding of bacterial quorum sensing and use of quorum inhibitors in aquaculture (review). Animal Husbandry and Fodder Production. 2024;107(1):128-146. (In Russ.). https://doi.org/10.33284/2658-3135-107-1-128

 

References

 
  1. Arinzhanova MS, Miroshnikova EP, Arinzhanov AЕ, Kilyakova JuV. Influence of a complex of amino acids and ultrafine particles of silicon dioxide on the growth of fish and the amino acid composition of the liver. Agrarian Scientific Journal. 2023;2:82-85. doi: 10.28983/asj.y2022i2pp82-85
  2. Kilyakova YuV, Miroshnikova EP, Arinzhanov AE, Arinzhanova MS. Influence of phytobiotic feed additives on growth and morphobiochemical parameters of fish blood. Animal Husbandry and Fodder Production. 2022;105(3):115-125. doi: 10.33284/2658-3135-105-3-115
  3. Zueva MS. Modern experience of including biologically active feed additives in the diet of fish. Animal Husbandry and Fodder Production. 2022;105(4):146-164. doi: 10.33284/2658-3135-105-4-146
  4. Mingazova MS, Miroshnikova EP, Arinzhanov AЕ, Kilyakova YuV. Concentration of chemical elements in carp muscle tissue when biologically active substances are included in the diet. Animal Husbandry and Fodder Production. 2023;106(4):18-29. doi: 10.33284/2658-3135-106-4-18
  5. Miroshnikova EP, Arinzhanov AE, Kilyakova YV, Zueva MS. Assessment of the elemental status of carp grown on a diet with the inclusion of probiotic preparations. Technologies of the Food and Processing Industry of the Agro-industrial Complex-Healthy Food Products. 2022;1:83-88. doi: 10.24412/2311-6447-2022-1-83-88
  6. Abdel-Tawwab M, Adeshina I, Jenyo-Oni A, Ajani EK, Emikpe BO. Growth, physiological, antioxidants, and immune response of African catfish, Clarias gariepinus (B.), to dietary clove basil, Ocimum gratissimum, leaf extract and its susceptibility to Listeria monocytogenes Fish & Shellfish Immunology. 2018;78:346-354. doi: 10.1016/j.fsi.2018.04.057
  7. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. mBio. 2018;9(3):e02331-17. doi: 10.1128/mBio.02331-17
  8. Adams A. Progress, challenges and opportunities in fish vaccine development. Fish & Shellfish Immunology. 2019;90:210- doi: 10.1016/j.fsi.2019.04.066
  9. Ahator SD, Zhang LH. Small is mighty-chemical communication systems in Pseudomonas aeruginosa. Annual Review of Microbiology. 2019;73:559- doi: 10.1146/annurev-micro-020518-120044
  10. Alexpandi R, Ponraj JG, Swasthikka RP, Abirami G, Ragupathi Th, Jayakumar R, Ravi AV. Anti-QS mediated anti-infection efficacy of probiotic culture-supernatant against Vibrio campbellii infection and the identification of active compounds through in vitro and in silico. Biocatalysis and Agricultural Biotechnology. 2021;35:102108. doi: 10.1016/j.bcab.2021.102108
  11. Blandford MI, Taylor-Brown A, Schlacher Th, Nowak B, Polkinghorne A. Epitheliocystis in fish: An emerging aquaculture disease with a global impact. Transboundary and Emerging Diseases. 2018;65(6):1436-1446. doi: 1111/tbed.12908
  12. Chen B, Peng M, Tong W, Zhang Q, Song Z. The quorum quenching bacterium Bacillus licheniformis T-1 protects zebrafish against Aeromonas hydrophila Probiotics and Antimicrobial Proteins. 2020;12:160-171. doi: 10.1007/s12602-018-9495-7
  13. Chen J, Wang B, Lu Y, Guo Y, Sun J, Wei B, Zhang H, Wang H. Quorum sensing inhibitors from marine microorganisms and their synthetic derivatives. Marine Drugs. 2019;17(2):80. doi: 10.3390/md17020080
  14. Dai L, Wu TQ, Xiong YS, Ni HB, Ding Y, Zhang WC, Chu ShP, Ju Sh-Q, Yu J. Ibuprofen-mediated potential inhibition of biofilm development and quorum sensing in Pseudomonas aeruginosa. Life Sciences. 2019;237:116947. doi: 10.1016/j.lfs.2019.116947
  15. Dong YH, Xu JL, Li XZ, Zhang LH. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(7):3526-3531. doi: 10.1073/pnas.97.7.3526
  16. Eickhoff MJ, Bassler BL. SnapShot: bacterial quorum sensing. Cell. 2018;174(5):1328-el. doi: 10.1016/j.cell.2018.08.003
  17. El-Kurdi N, Abdulla H, Hanora A. Anti-quorum sensing activity of some marine bacteria isolated from different marine resources in Egypt. Biotechnology Letters. 2021;43(2):455- doi: 10.1007/s10529-020-03020-x
  18. Escobar-Mucino E, Arenas-Hernandez MMP, Luna-Guevara ML. Mechanisms of inhibition of quorum sensing as an alternative for the control of coli and Salmonella. Microorganisms. 2022;10(5):884. doi: 10.3390/microorganisms10050884
  19. Firmino JP,  Galindo-Villegas J, Reyes-Lopez FE, Gisbert E. Phytogenic bioactive compounds shape fish mucosal immunity. Frontiers in Immunology. 2021;12:695973. doi: 10.3389/fimmu.2021.695973
  20. Fuqua C,  Winans SC,  Greenberg EP.  Quorum  sensing  in  bacteria:  The  LuxR-LuxI  family of  cell  density-responsive  transcriptional  Journal  of Bacteriology. 1994;176(2):269-275. doi: 10.1128/jb.176.2.269-275.1994
  21. Gajdacs M, Spengler G. The role of drug repurposing in the development of novel antimicrobial drugs: non-antibiotic pharmacological agents as quorum sensing-inhibitors. Antibiotics. 2019;8(4):270. doi: 10.3390/antibiotics8040270
  22. Ganesh PS, Rai VR. Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. Journal of Traditional and Complementary Medicine. 2018;8(1):170- doi: 10.1016/j.jtcme.2017.05.008
  23. Garcia-Contreras R,  Wood TK,  Tomas M.  Editorial:  Quorum  Network (Sensing/Quenching) in Multidrug-Resistant Pathogens. Frontiers in Cellular and Infection Microbiology. 2019;9:80. doi: 10.3389/fcimb.2019.00080
  24. Garza M, Mohan ChV, Rahman M, Wieland B, Hasler B. The role of infectious disease impact in informing decision-making for animal health management in aquaculture systems in Bangladesh. Preventive Veterinary Medicine. 2019;167:202- doi: 10.1016/j.prevetmed.2018.03.004
  25. Girard L.  Quorum  sensing  in  Vibrio:  the  complexity  of  multiple  signaling  molecules  in  marine  and  aquatic  environments.  Critical  Reviews  in  Microbiology.  2019;45(4):451-471. doi: 10.1080/1040841X.2019.1624499
  26. Gupta DS,  Kumar MS.  The  implications  of  quorum  sensing  inhibition  in  bacterial antibiotic resistance- with a special focus on aquaculture. Journal of Microbiological Methods. 2022;203:106602. doi: 10.1016/j.mimet.2022.106602
  27. Hasan KN. Banerjee G. Recent studies on probiotics as beneficial mediator in aquaculture: a review. The Journal of Basic and Applied Zoology. 2020;81:53. doi: 10.1186/s41936-020-00190-y
  28. Huang X, Ma Y, Wang Y, Niu Ch, Liu Zh, Yao X, Jiang X, Pan R, Jia Sh, Li D, Guan X, Wang L, Xu Y. Oral probiotic vaccine expressing koi herpesvirus (KHV) ORF81 protein delivered by chitosan-alginate capsules is a promising strategy for mass oral vaccination of carps against KHV infection. Journal of Virology. 2021;95(12):e00415-21. doi: 10.1128/JVI.00415-21
  29. Iorizzo M,   Albanese G,   Letizia F,   Testa B,   Tremonte P,  Vergalito F,  Lombardi SJ,  Succi M, Coppola R, Sorrentino E.  Probiotic  potentiality from versatile Lactiplantibacillus plantarum strains as resource to enhance freshwater fish health. Microorganism. 2022;10(2):463. doi: 10.3390/microorganisms10020463
  30. James G, Das BC, Jose S, Kumar VJR. Bacillus as an aquaculture friendly microbe. Aquaculture International. 2021;29:323- doi: 10.1007/s10499-020-00630-0
  31. James G, Geetha PP, Puthiyedathu ST, Jayadradhan RKV. Applications of Actinobacteria in aquaculture: prospects and challenges. 3 Biotech. 2023;13:42. doi: 10.1007/s13205-023-03465-7
  32. Jia Sh, Zhou K, Pan R, Wei J, Liu Zh, Xu Y. Oral immunization of carps with chitosan-alginate  microcapsule  containing  probiotic  expressing  spring  viremia  of  carp  virus (SVCV) G protein provides effective protection against SVCV infection. Fish & Shellfish Immunology. 2020;105:327-329. doi: 10.1016/j.fsi.2020.07.052
  33. Jiang Q, Chen J, Yang Ch, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. BioMed Research International. 2019;2019:2015978. doi: 10.1155/2019/2015978
  34. Kalia VC, Patel SKS, Kang YCh, Lee J-K. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnology Advances. 2019;37(1):68- doi: 10.1016/j.biotechadv.2018.11.006
  35. Karuppiah V, Seralathan M. Quorum sensing inhibitory potential of vaccenic acid against Chromobacterium violaceum and methicillin-resistant Staphylococcus aureus. World Journal of Microbiology and Biotechnology. 2022;38:146. doi: 10.1007/s11274-022-03335-z
  36. Kasanah N, Ulfah M, Rowley DC. Natural products as antivibrio agents: insight into the chemistry and biological activity. RCS Advances. 2022;12(53):34531- doi: 10.1039/d2ra05076e
  37. Krzyzek P. Challenges and limitations of anti-quorum sensing therapies. Frontiers in Microbiology. 2019;10:2473. doi: 10.3389/fmicb.2019.02473
  38. Li J, Li Zh, Xie J, Xia Y, Gong W, Tian J, Zhang K, Yu E, Wang G. Quorum-quenching potential of recombinant PvdQ-engineered bacteria for biofilm formation. International Microbiology. 2023;26(3):639-650. doi: 10.1007/s10123-023-00329-1
  39. Liang Q, Liu G, Guo Z, Wang Y, Xu Z, Ren Y, Zhang Q, Cui M, Zhao X, Xu D. Application of potential probiotic strain Streptomyces SH5 on anti-Aeromonas infection in zebrafish larvae. Fish & Shellfish Immunology. 2022;127:375-385. doi: 10.1016/j.fsi.2022.06.049
  40. Liu J, Fu K, Wu Ch, Qin K, Li F, Zhou L. “In-Group” communication in marine Vibrio: a review of N-Acyl homoserine lactones-driven quorum sensing. Frontiers in Cellular and Infection Microbiology. 2018;8:139. doi: 10.3389/fcimb.2018.00139
  41. Liu Y, Ebalunode JO, Briggs JM. Insights into the substrate binding specificity of quorum-quenching acylase PvdQ. Journal of Molecular Graphics and Modelling. 2019;88:104- doi: 10.1016/j.jmgm.2019.01.006
  42. Longo SB, Clark B, York R, Jorgenson AK. Aquaculture and the displacement of fisheries captures. Conservation Biology. 2019;33(4):832-841. doi: 10.1111/cobi.13295
  43. Lulijwa R, Rupia E J, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture. 2019;12(2):640- doi: 10.1111/raq.12344
  44. Mai T, Toullec J, Wynsberge SV, Besson M, Soulet S, Petek S, Aliotti E, Ekins M, Hall K, Erpenbeck D, Lecchini D, Beniddir MA, Saulnier D, Debitus C. Potential of fascaplysin and palauolide from Fascaplysinopsis cf reticulata to reduce the risk of bacterial infection in fish farming. Fisheries and Aquatic Sciences. 2019;22:30. doi: 10.1186/s41240-019-0145-0
  45. Milivojevic D, Sumonja N, Medic S, Pavic A, Moric I, Vasiljevic V, Senerovic L, Nikodinovic-Runic J. Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. Pathogens and Disease. 2018;76(4):fty041. doi: 10.1093/femspd/fty041
  46. Mugwanya M, Dawood MAO, Kimera F, Sewilam H. Updating the role of probiotics, prebiotics, and synbiotics for tilapia aquaculture as leading candidates for food sustainability: a review. Probiotics and Antimicrobial Proteins. 2022;14:130- doi: 10.1007/s12602-021-09852-x
  47. Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews  2019;17(6):371-382. doi: 10.1038/s41579-019-0186-5
  48. Nathalia O,  Waturangi DE.  Extract  from  phyllosphere  bacteria  with antibiofilm and quorum quenching activity to control several fish pathogenic bacteria. BMC Research Notes. 2021;14(1):202. doi: 10.1186/s13104-021-05612-w
  49. Noor NM, Defoirdt T, Alipiah N, Karim M, Daud H, Natrah I. Quorum sensing is required for full virulence of Vibrio campbellii towards tiger grouper (Epinephelus fuscoguttatus). Journal of Fish Diseases. 2019;42(4):489- doi: 10.1111/jfd.12946
  50. Oluwabusola ET,  Katermeran NP,  Poh WH,  Goh MB, Tan LT, Diyaolu O, Tabudravu J, Ebel R, Rice SA, Jaspars M. Inhibition  of  the  quorum  sensing  system,  elastase  production  and biofilm formation in Pseudomonas aeruginosa by psammaplin a and bisaprasin. Molecules. 2022;27(5):1721. doi: 10.3390/molecules27051721
  51. Padder SA, Prasad R, Shah AH. Quorum sensing: A less known mode of communication among fungi. Microbiological Research. 2018;210:51- doi:  10.1016/j.micres.2018.03.007
  52. Padra JT, Loibman SO, Thorell K, Sundh H, Sundell K, Linden SK. Atlantic salmon mucins inhibit luxs-dependent Salmonicida AI-2 quorum sensing in an n-acetylneuraminic acid-dependent manner. International Journal of Molecular Sciences. 2022;23(8):4326. doi: 10.3390/ijms23084326
  53. Pang Zh, Raudonis R, Glick BR, Lin TJ, Cheng Zh. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances. 2019;37(1):177- doi: 10.1016/j.biotechadv.2018.11.013
  54. Paopradit P, Aksonkird T, Mittraparp P. Indole inhibits quorum sensing-dependent phenotypes and virulence of acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus. Aquaculture Research. 2022;53(10):3586- doi: 10.1111/are.15863
  55. Pelusio NF,  Rossi B,  Parma L, Volpe E, Ciulli S, Piva A, D'Amico F, Scicchitano D, Candela M, Gatta PP, Bonaldo A, Grilli E. Effects of increasing dietary level of organic acids and nature-identical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature. Fish & Shellfish Immunology. 2020;107(Part A):324-335. doi: 10.1016/j.fsi.2020.10.021
  56. Perez-Sanchez T,  Mora-Sanchez B,  Balcazar JL.  Biological approaches for disease control in aquaculture: advantages, limitations and challenges. Trends in Microbiology. 2018;26(11):896- doi: 10.1016/j.tim.2018.05.002
  57. Qais FA, Khan MS, Ahmad I, Husain FM, Khan RA, Hassan I, Shahzad SA, AlHarbi W. Coumarin exhibits broad-spectrum antibiofilm and antiquorum sensing activity against gram-negative bacteria: In Vitro and In Silico.  ACS Omega. 2021;6(29):18823- doi: 10.1021/acsomega.1c02046
  58. Raissa G, Waturangi DE, Wahjuningrum D. Screening of antibiofilm and anti-quorum sensing activty of Actinomycetes isolates extracts against aquaculture pathogenic bacteria. BMC Microbiology. 2020;20(1):343. doi: 10.1186/s12866-020-02022-z
  59. Reina JC, Pérez-Victoria I, Martín J, Llamas I. A quorum-sensing inhibitor strain of Vibrio alginolyticus blocks qs-controlled phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Marine Drugs. 2019;17(9):494. doi: 3390/md17090494
  60. Reina JC, Romero M, Salto R, Camara M, Llamas I. AhaP, a quorum quenching acylase from Psychrobacter M9-54-1 that attenuates Pseudomonas aeruginosa and Vibrio coralliilyticus virulence. Marine Drugs. 2021:19(1):16. doi: 10.3390/md19010016
  61. Rezende RAE, Soares MP, Sampaio FG, Cardoso IL, Ishikawa MM, Dallago BSL, Rantin FT, Duarte MCT. Phytobiotics blend as a dietary supplement for Nile tilapia health improvement. Fish & Shellfish Immunology. 2021;114:293- doi: 10.1016/j.fsi.2021.05.010
  62. Ruiz CH, Osorio-Llanes E, Trespalacios MH, Mendoza-Torres E, Rosales W, Melendez Gomez CM. Quorum Sensing regulation as a target for antimicrobial therapy. Mini Reviews in Medicinal Chemistry. 2022;22(6):848- doi: 10.2174/1389557521666211202115259
  63. Santhakumaria  S,  Jayakumar R,  Logalakshmi R, Prabhu NM, Nazar AKA, Pandian SK, Ravi AV. In vitro and in vivo effect of 2,6-Di-tert-butyl-4-methylphenol as an antibiofilm agent against quorum sensing mediated biofilm formation of Vibrio International Journal of Food Microbiology. 2018;281:60-71. doi: 10.1016/j.ijfoodmicro.2018.05.024
  64. Santos RA, Monteiro M, Rangel F, Jerusik R, Saavedra MJ, Carvalho AP, Oliva-Teles A, Serra CR. Bacillus inhibit Edwardsiella tarda quorum-sensing and fish infection. Marine Drugs. 2021;19(11):602. doi: 10.3390/md19110602
  65. Shaw E, Wuest WM. Virulence attenuating combination therapy: a potential multi-target synergy approach to treat Pseudomonas aeruginosa infections in cystic fibrosis patients. RSC Medicinal Chemistry. 2020;11(3):358- doi: 10.1039/c9md00566h
  66. Shrestha P, Cooper BS, Coast J, Oppong R, Thuy NDT, Phodha T, Celhay O, Guerin PhJ, Wertheim H, Lubell Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrobial Resistance & Infection Control. 2018;7:98. doi: 10.1186/s13756-018-0384-3
  67. Sindeldecker D, Stoodley P. The many antibiotic resistance and tolerance strategies of Pseudomonas aeruginosa. 2021;3:100056. doi: 10.1016/j.bioflm.2021.100056
  68. Soukarieh F, Williams P, Stocks MJ, Camara M. Pseudomonas aeruginosa quorum sensing systems as drug discovery targets: current position and future perspectives. Journal of Medical Chemistry. 2018;61(23):10385- doi: 10.1021/acs.jmedchem.8b00540
  69. Sun Y, Guo D, Hua Z, Sun H, Zheng Z, Xia X, Shi Ch. Attenuation of multiple Vibrio parahaemolyticus virulence factors by citral. Frontiers in Microbiology. 2019;10:894. doi: 10.3389/fmicb.2019.00894
  70. Torabi Delshad S, Soltanian S, Sharifiyazdi H, Haghkhah M, Bossier P. Identification of N-acyl homoserine lactone-degrading bacteria isolated from rainbow trout (Oncorhynchus mykiss). Journal of Applied Microbiology. 2018;125(2):356- doi: 10.1111/jam.13891
  71. Torres M, Dessaux Y, Llamas I. Saline environments as a source of potential quorum sensing disruptors to control bacterial infections: a review. Marine Drugs. 2019;17(3):191. doi: 3390/md17030191
  72. Torres M, Reina JC, Fuentes-Monteverde JC, Fernandez G, Rodriguez J, Jimenez C, Llamas I. AHL-lactonase expression in three marine emerging pathogenic Vibrio reduces virulence and mortality in brine shrimp (Artemia salina) and Manila clam (Venerupis philippinarum). PloS one. 2018;13(4):e0195176. doi: 10.1371/journal.pone.0195176
  73. Vadassery DH, Pillari D. Quorum quenching potential of Enterococcus faecium QQ12 isolated from gastrointestinal tract of Oreochromis niloticus and its application as a probiotic for the control of Aeromonas hydrophila infection in goldfish Carassius auratus (Linnaeus 1758). Brazilian Journal of Microbiology. 2020;51:1333- doi: 10.1007/s42770-020-00230-3
  74. Vasudevan S, Swamy SS, Kaur G, Princy SA, Balamurugan P. Synergism between quorum  sensing  inhibitors  and  antibiotics:  combating the antibiotic resistance crisis. In: Kalia VC, editor. Biotechnological Applications of Quorum Sensing Inhibitors. Singapore: Springer; 2018:209- doi: 10.1007/978-981-10-9026-4_10
  75. Xie J, Bu L, Jin Sh, Wang X, Zhao Q, Zhou S, Xu Y. Outbreak of vibriosis caused by Vibrio harveyi and Vibrio alginolyticus in farmed seahorse Hippocampus kuda in China. Aquaculture. 2020;523:735168. doi: 10.1016/j.aquaculture.2020.735168
  76. Yusof NAM, Razali SA, Padzil AM, Lau BYCh, Baharum SN, Muhammad NAN, Raston NHA, Chong ChM, Ikhsan NFM, Situmorang ML, Fei LCh. Computationally designed Anti-LuxP DNA aptamer suppressed flagellar assembly- and quorum sensing-related gene expression in Vibrio parahaemolyticus. Biology (Basel). 2022;11(11):1600. doi: 10.3390/biology11111600
  77. Zeng YX, Liu JSh, Wang YJ, Tang Sh, Wang DY, Deng ShM, Jia AQ. Actinomycin D: a novel Pseudomonas aeruginosa quorum sensing inhibitor from the endophyte Streptomyces cyaneochromogenes World Journal of Microbiology and Biotechnology. 2022;38:170. doi: 10.1007/s11274-022-03360-y
  78. Zhang W, Li Ch. Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data. Reviews in Aquaculture. 2021;13(4):2004- doi: 10.1111/raq.12555
  79. Zhao X, Yu Z, Ding T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms. 2020;8(3):425. doi: 10.3390/microorganisms8030425
 

Information about the authors:

Marina S Mingazova, Assistant of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, Postgraduate student of 2 year of study, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-853-24-46.

Elena P Miroshnikova, Dr. Sci. (Biology), Professor, Head of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-987-862-98-86.

Azamat E Arinzhanov, Cand. Sci. (Agriculture), Associate Professor, Associate Professor of the Department  of  Biotechnology  of  Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-922-806-33-43.

Yulia V Kilyakova, Cand. Sci. (Biology), Associate Professor, Associate Professor of the Department  of  Biotechnology  of  Animal  Raw  Materials  and  Aquaculture,  Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-961-920-40-64.

The article was submitted 05.02.2024; approved after reviewing 16.02.2024; accepted for publication 18.03.2024.

Download