Kulikova SG, Narozhnykh KN, Gart VV, Kamaldinov EV, Petrov AF, Efremova OV.

Animal Husbandry and Fodder Production. 2025. Vol. 108. No. 4. Р. 106-118.

doi:10.33284/2658-3135-108-4-106

Original article

The effect of sire’s genotype on body depth in Holstein daughters

 

Svetlana G Kulikova1, Kirill N Narozhnykh2, Vladimir V Gart3, Evgeny V Kamaldinov4,

Alexey F Petrov5, Olga V Efremova6

1,2,3,4,5Novosibirsk State Agrarian University, Novosibirsk, Russia

6Irmen Breeding Farm, CJSC, Verkh-Irmen, Novosibirsk region, Russia

1kulikovasg@yandex.ru, https://orcid.org/0009-0001-1425-8622

2nkn.88@mail.ru, https://orcid.org/0000-0002-1519-697X

3gvlvl@yandex.ru, https://orcid.org/0000-0002-7356-1090

4ekamaldinov@yandex.ru, https://orcid.org/0000-0002-0341-5055

5lexluterking@yandex.ru, https://orcid.org/0000-0002-7402-4107

6irmeny@mail.ru

Abstract. Body depth is an important trait of linear evaluation of exterior in dairy cattle associated with productive longevity and adaptability. Assessing the genetic factors that determine this trait is fundamental for developing effective breeding programs. The aim of this study was to evaluate the effect of sire genotype on body depth in Holstein first-calf heifers.  The study was conducted on 982 first-calf heifers, descended from 16 sires, in the conditions of the Irmen Breeding Farm CJSC, Novosibirsk region. The body depth was assessed on a 9-point linear scale. Due to the data's non-compliance with the assumptions of parametric tests (non-normal distribution and heterogeneity of variances, α <0.001), the non-parametric Kruskal-Wallis test was used for analysis. The Conover-Iman test and a permutation test with Holm's correction were used for post-hoc pairwise comparisons. The effect of the "sire" factor was estimated using eta-squared (η²). A highly significant (χ²=344.92; df=15; α <0.001) effect of the sire's genotype on the daughters' body depth was established. This factor explained 35.44% (η²=0.3544) of the total phenotypic variance of the trait. Statistically significant differences were found among the daughter groups of most sires, indicating considerable genetic diversity in the population. It was found that daughters of sires with optimal body depth (7…8 points) had 262 kg higher milk yield compared to peers with excessively deep bodies (α<0.001). The obtained results can be used in breeding programs for targeted sire selection to optimize the exterior profile and enhance productive longevity in Holstein herds.

Keywords: sire, first-calf heifer, Holstein breed, body depth, linear type appraisal, genetic influence, effect size, non-parametric analysis, selection

Acknowledgments: the work was performed in accordance to the plan of research works for 2023-2025 FSBEI HE NSAU (No. FESF-2023-0016).

For citation: Kulikova SG,  Narozhnykh KN,  Gart VV,  Kamaldinov  EV,  Petrov  AF,  Efremova OV. Influence of sire’s genotype on body depth in Holstein daughters. Animal Husbandry and Fodder Production. 2025;108(4):106-118. (In Russ.). https://doi.org/10.33284/2658-3135-108-4-106

References

 

  1. Gorshkov VV, Shchetinina EV. Possible increase of volumes of industrial milk production due to changes in milk productivity of cows in the course of intra-line selection. Animal Husbandry and Fodder Production. 2024;107(3): 89-98. doi: 33284/2658-3135-107-3-89
  2. Kulikova SG, Gart VV, Efremova OV, Kamaltdinov EV, Petrov AF. Variability of linear traits of the daughters of bulls with different breeding value. Perm Agrarian Journal. 2025;2(50):101-108. doi: 10.47737/2307-2873_2025_50_101
  3. Methodology for assessing the body conformation of dairy and dual-purpose cattle. Moscow; 2017:24 p.
  4. Conte AF, Ermilov AN, Bychkunova NG, Sermyagin AA. Evaluation of a tribal value of bulls-producers of the population of black-milled cattle of Moscow region by type of bodies of cow’s daughters. Proceedings of Lower Volga Agro-University Complex: Science and Higher Education. 2019;3(55):275-283. doi: 10.32786/2071-9485-2019-03-35
  5. Bogdanova OV, Gart VV, Kulikova SG, Kamaldinov EV, Amerkhanov KhA, Narozhnykh KN, Petrov AF, Zhigulin TA, Astafyev AA. Differences between countries in terms of linear assessment of the conformation of Holstein cattle. Achievements of Science and Technology in Agro-industrial Complex. 2023;37(8):59-64. doi: 10.53859/02352451_2023_37_8_59
  6. Safronova AA, Dzhulamanov KM, Gerasimov NP. Development of a new method for evaluation and selection of sires based on index evaluation. Perm Agrarian Journal. 2024;3(47):126-133. doi: 10.47737/2307-2873_2024_47_126
  7. Tatarkina NI, Svyazhenina MA, Ponomareva EA. The use of exterior assessment in the selection of Holstein cattle. Agrarian Bulletin of the Urals. 2023;23(10):81-90. doi: 10.32417/1997-4868-2023-23-10-81-90
  8. Wickham H, Grosser M, Bumani H. Advanced R. Advanced R Solutions. Second edition, trans. from English by Ginko AYu. Moscow: DMK Press; 2024:752 p.
  9. Mironov EG, Logacheva AYu, Joy IYu, Samokhvalov AA. Formation of an expanded linear conformation traits list for the dairy cattle based on international and Russian experience. Genetics and Breeding of Animals. 2024;3:60-76. doi: 31043/2410-2733-2024-3-60-76
  10. Gart VV, Efremova OV, Kulikova SG, Bogdanova OV, Petrov AF, Narozhnykh KN, Norkina VM, Kamaldinov EV. Characteristics of the linear profile of holstein heifers of different productivity under the conditions of the industrial complex. Achievements of science and technology in agro-industrial complex. 2024;38(3):45-50. doi: 10.53859/02352451_2024_38_3_45
  11. Chechenikhina OS, Menshchikov NN, Stepanov АV, Smirnova ES, Sinko VN, Shilovtsev А The influence of line on indicators of dairy productivity of the Holstein cows with various levels of stress resistance. Animal Husbandry and Fodder Production. 2024;107(4):83-93. doi: 10.33284/2658-3135-107-4-83
  12. Alcantara LM, Baesa CF, de Oliveira Juniora GA, Schenkel FS. Conformation traits of Holstein cows and their association with a Canadian economic selection index. Canadian Journal of Animal Science. 2022;102(3):490-500. doi:1139/cjas-2022-0013
  13. Batanov SD, Starostina OS, Baranova IA. Genetic parameters of productivity and exterior traits of dairy cattle. IOP Conf. Ser.: Earth Environ. Sci 2020;548(3):032023. doi: 10.1088/1755-1315/548/3/032023
  14. Fang L, Jiang J, Li B, Zhou Y, Freebern E, Vanraden PM, Ma L. Genetic and epigenetic architecture of paternal origin contribute to gestation length in cattle. Communications biology. 2019;2(1):100. doi: 1038/s42003-019-0341-6
  15. Galina CS, Geffroy M. Dual-purpose cattle raised in tropical conditions: What are their shortcomings in sound productive and reproductive function? Animals. 2023;13(13):2224. doi: 3390/ani13132224
  16. Holt CA, Sullivan SP. Permutation tests for experimental data. Experimental Economics. 2023:1-38. doi: 10.1007/s10683-023-09799-6
  17. Horalskyi LP, Ragulya МR, Glukhova NM, Sokulskiy IM, Kolesnik NL, Dunaievska OF, Goralska IY. Morphology and specifics of morphometry of lungs and myocardium of heart ventricles of cattle, sheep and horses. Regulatory Mechanisms in Biosystems. 2022;13(1):53-59. doi: 15421/022207
  18. Iacobucci D, Popovich DL, Moon S, Román S. How to calculate, use, and report variance explained effect size indices and not die trying. Journal of Consumer Psychology. 2023;33(1):45-61. doi: 10.1002/jcpy.1292
  19. Kőrösi ZJ, Holló G, Bene S, Bognár L, Szabó F. Association of production and selected dimensional conformation traits in Holstein Friesian cows. Animals. 2024;14(18): doi: 10.3390/ani14182753
  20. Mursadin A. The use of nonparametric statistical inference for studying the effects of construction waste. Modern Environmental Science and Engineering. 2020;6(1):128-138. doi: 10.15341/mese(2333-2581)/01.06.2020/012
  21. Narozhnykh K, Kamaldinov E, Bogdanova O, Kulikova S, Gart V, Petrov A. Prediction of milk productivity based on conformation traits in cows. International Journal of Chemical and Biochemical Sciences. 2023;24(6):521-529.
  22. Odoi B, Samita S, Al-Hassan S, Twumasi-Ankrah S. Efficiency of Bartlett and Levenes tests for testing homogeneity of variance under varying number of replicates and groups in one–way ANOVA. Int. J. Innov. Technol. Explor. Eng. IJITEE. 2019;8(6S4):1219-1223. doi: 10.35940/ijitee.F1250.0486S419
  23. Petrov AF, Bogdanova OV, Narozhnykh KN, Kamaldinov EV, Shatokhin KS, Gart VV, Kulikova SG, Zhigulin TA.  Clustering of countries based on dairy productivity characteristics of Holstein cattle for breeding material selection. Veterinary World. 2024;17(5):1108-1118. doi: 14202/vetworld.2024.1108-1118
  24. VandeHaar MJ, Armentano LE, Weigel K, Spurlock DM, Tempelman RJ & Veerkamp R. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. Journal of Dairy Science. 2016;99(6):4941-4954. doi: 3168/jds.2015-10352
  25. Xue X, Hu H, Zhang J, Ma Y, Han L, Hao F, Jiang Y, Ma Y. Estimation of genetic parameters for conformation traits and milk production traits in Chinese Holsteins. Animals. 2022;13(1):100. doi:3390/ani13010100
  26. Yardibi F, Chen C, Fırat MZ, Karacaören B, Süzen E. The trend of breeding value research in animal science: bibliometric analysis. Archives animal breeding. 2023;66(2):163-181. doi: 5194/aab-66-163-2023
  27. Zheng Z, Gao JB, Weng Z. Measurement of body size parameters and body weight prediction in beef cattle based on image analysis. Journal of Intelligent & Fuzzy Systems. 2024;47(1-2):155-167. doi: 3233/JIFS-238016

Information about the authors:

Svetlana G Kulikova, Dr. Sci. (Biology), Professor, Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, 160 Dobrolyubova St., Novosibirsk, 630039, Russia, tel.: 8-913-953-94-45.

Kirill N Narozhnykh, Cand. Sci. (Biology), Associate Professor, Department of Applied Bioinformatics, Novosibirsk State Agrarian University, 160 Dobrolyubova St., Novosibirsk, 630039, Russia, tel.: 8-952-938-38-91.

Vladimir V Gart, Dr. Sci. (Agriculture), Professor, Department of Applied Bioinformatics, Novosibirsk State Agrarian University, 160 Dobrolyubova St., Novosibirsk, 630039, Russia, tel.: 8-923-193-62-31.

Evgeny V Kamaldinov, Dr. Sci. (Biology), Associate Professor, Head of the Department of Applied Bioinformatics, Novosibirsk State Agrarian University, 160 Dobrolyubova St., Novosibirsk, 630039, Russia, tel.: 8-913-923-66-33.

Alexey F Petrov, Head of the Laboratory of Applied Bioinformatics, Novosibirsk State Agrarian University, 160 Dobrolyubova St., Novosibirsk, 630039, Russia, tel.: 8-952-933-82-54.

Olga V Efremova, Chief Animal Breeder, Irmen Breeding Farm, CJSC, Verkh-Irmen, Ordynsky district, Novosibirsk region, 633272, Russia, tel.: 8-952-933-82-54.

The article was submitted 08.07.2025; approved after reviewing 23.09.2025; accepted for publication 15.12.2025.

Download