Pozovnikova MV, Romanova EA, Tulinova OV, Shcherbakov YS, Azovtseva АI, Sermyagin AA.

Animal Husbandry and Fodder Production. 2025. Vol. 108. No. 4. Р. 162-183.

doi:10.33284/2658-3135-108-4-162

Original article

Analysis of whole-genome associations with live weight at different ages in Ayrshire heifers

 

Marina V Pozovnikova1, Elena A Romanova2, Olga V Tulinova3,

Yuri S Shcherbakov 4, Аnastasia I Azovtseva5, Alexander A Sermyagin6

1,2,3,4,5,6Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the LK Ernst

Federal Research Center for Animal Husbandry, Tyarlevo, Russia

1pozovnikova@gmail.com, https://orcid.org/0000-0002-8658-2026

2splicing86@gmail.com, https://orcid.org/0000-0002-4225-5533

3tulinova_59@mail.ru, https://orcid.org/0009-0005-5704-4420

4yura.10.08.94.94@mail.ru, https://orcid.org/0000-0001-6434-6287

5ase4ica15@mail.ru, https://orcid.org/0000-0002-2963-378X

6alex_sermyagin85@mail.ru, https://orcid.org/0009-0005-2386-1289

Abstract. Live weight of heifers during the growing period is an indicator of the general development of the body and the strength of the constitution and directly affects the level of milk productivity of first-calf heifers. Therefore, the aim of this study was to identify SNPs associated with live weight of Ayrshire animals using genome-wide association analysis (GWAS). The study population of cows (n=1281), born between 2018 and 2019, bred in 12 breeding farms from 6 regions of the Russian Federation were genotyped using the Illumina BovineSNP50 BeadChip (50K) DNA chip with a coverage density of 54,609 SNPs. High coefficients of genetic determination in the studied sample of animals were noted for live weight at birth - 0.65 and live weight at 18 months. - 0.56, which determines the possibility of using the studied parameters in this herd as fundamental characteristics for successful animal selection. A genome-wide association study in Ayrshire heifers revealed 12 putatively significant SNPs on chromosomes BTA9,15,18,20,25 and X associated with live weight at birth, 10 and 12 months. Annotation of the regions within which the identified SNPs are localized led to the discovery of 14 candidate genes associated with reproduction (PPP4R3C, TRPC5OS, DCDC1, CDH18, CNTNAP4, CITED2, TXLNB, MAP3K5), cell cycle (TRPC5, SCML2, CDKL5, DTX2, DCDC1, HECA, MAP3K5), as well as metabolism and energy homeostasis (TRPC5). The obtained results can be recommended for use in genomic and marker-associated selection programs for the Ayrshire cattle breed to improve the efficiency of animal use.

Keywords: heifers, Ayrshire breed, GWAS, live weight, correlation coefficient, heritability coefficient, SNP, Bos Taurus

Acknowledgments: the work was performed in accordance to the additional plan of research works for 2025 LK Ernst Federal Research Center (No. FGGN-2024-0021).

For citation: Pozovnikova MV, Romanova EA, Tulinova OV, Shcherbakov YS, Azovtseva АI, Sermyagin AA. Analysis of whole-genome associations with live weight at different ages in Ayrshire heifers. Animal Husbandry and Fodder Production. 2025;108(4):162-183. (In Russ.). https://doi.org/10.33284/2658-3135-108-4-162

References

 

  1. Amerhanov H, Muhtarova O. Young cattle live weight influence on the subsequent milk productivity of first-calf heifers in different climate zones of the Russian Federation. Bulletin of KSAU. 2024;3(204):170-178. doi: 10.36718/1819-4036-2024-3-170-178
  2. Golubkov AI, Efimov LV, Golubkov AA. Dairy productivity of Yenisei red-motley cows as a function of growth rate and age of fertile insemination. Bulletin of NSAU (Novosibirsk State Agrarian University). 2021;4(61):100-107. doi:10.31677/2072-6724-2021-61-4-100-107
  3. Kuzyakina LI. The influence of live weight on dairy productivity and reproductive functions of first-calf cows. Current issues of intensive development of animal husbandry: collection of scientific papers. Gorki: BSAA. 2022;25(2):94-102.
  4. Mekhtiyeva KS, Krovikova AN, Mochalova AYe. The effect of live weight on dairy productivity of cows. Innovative science.2021;6:65-66.
  5. Adushinov DS, Kuznetsov AI, Gribachev PA, Zhuravlev AN et al. Milk productivity of cows depending on the intensity of growing heifers. Technologies of the food and processing industry of the agro-industrial complex - healthy food products. 2024;3:150-154. doi: 10.24412/2311-6447-2024-3-150-154
  6. Petrov YuA, Kupina AD. Fetal programming is a way to prevent diseases in adulthood (literature review). Medical Council. 2020;13:50-56. doi: 10.21518/2079-701X-2020-13-50-56
  7. Petrukhina LL. Milk productivity of first-calf cows depending on the intensity of their Siberian Bulletin Herald of Agricultural Science. 2021;51(6):77-83. doi: 10.26898/0370-8799-2021-6-9

  1. Gorlov IF, Slozhenkina M, Anisimova E, Karpenko E, Badmaeva K, Ubushieva Vet al. Polymorphism  of  the  GH,  MC4R  and  CAPN1  genes  in southern beef cattle populations and their impact on live weight. Animal Husbandry and Fodder Production. 2023;106(3):21-34. doi: 10.33284/2658-3135-106-3-21
  2. Abdelmanova AS et al. Whole genome study of single nucleotide polymorphisms’ associations  with  withers height  in  local  and  transboundary breeds in Russia. Sel’skokhozyaistvennaya biologiya   [Agricultural biology].  2021;56(6):1111-1122. doi: 10.15389/agrobiology.2021.6.1111rus  doi: 10.15389/agrobiology.2021.6.1111eng
  3. Tret`yakov EA. Influence of live weight of replacement heifers on their subsequent milk productivity. Dairy Herald Farming Journal. 2022;4(48):108-124. doi: 10.52231/2225-4269_2021_3_108
  4. Khabibullin RM. The effect of adaptogens on growth and development of Kazakh White-Headed bulls. Animal Husbandry and Fodder Production. 2023;106(2):75-84. doi:10.33284/2658-3135-106-2-75
  5. Ahmad SF et al. Haplotype-based association study of production and reproduction traits in multigenerational Vrindavani population. Gene. 2023;867:147365. doi: 10.1016/j.gene.2023.147365
  6. Alemu SW, Handcock RC, Garrick DJ. Estimated genetic parameters for mature cow live weights during lactation in a multi-breed dairy cattle population. New Zealand Journal of Agricultural Research. 2025;68(3):547-554. doi: 10.1080/00288233.2023.2261875
  7. Andrew DJ, Scott MP. Downstream of the homeotic genes. New Biol. 1992;4(1):5-15.
  8. Braga LG et al. Selection signatures in Gir and Holstein cattle. J Dairy Sci. 2025;108(9):9876-9900. doi: 10.3168/jds.2024-26147
  9. Braz CU et al. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci Rep. 2021;11(1):13335. doi: 10.1038/s41598-021-92455-x
  10. Cavani L et al. Consistency of dry matter intake in Holstein cows: Heritability estimates and associations with feed efficiency. J Dairy Sci. 2024; 107(2):1054-1067. doi:10.3168/jds.2023-23774
  11. Chellappan SP, Giordano A, Fisher PB. Role of cyclin-dependent kinases and their inhibitors in cellular differentiation and development. Curr Top Microbiol Immunol. 1998;227:57-103. doi: 10.1007/978-3-642-71941-7_4
  12. Cormier S et al. Developmental expression of the Notch signaling pathway genes during mouse preimplantation development. Gene Expr Patterns. 2004;4(6):713-717. doi: 10.1016/j.modgep.2004.04.003
  13. Costa A, Boselli C, De Marchi M. Effect of body weight and growth in early life on the reproductive performances of holstein heifers. Agriculture. 2021;11(2):159. doi: 10.3390/agriculture11020159
  14. Cui Y et al. TRPC5OS induces tumorigenesis by increasing ENO1-mediated glucose uptake in breast cancer. Transl Oncol. 2022;22:101447. doi: 10.1016/j.tranon.2022.101447
  15. Dijkmans TF, van  Hooijdonk  LW, Fitzsimons CP, Vreugdenhil E. The doublecortin gene family and disorders of neuronal structure. Cent Nerv Syst Agents Med Chem. 2010;10(1):32-46. doi: 10.2174/187152410790780118.
  16. Dowejko A, Bauer RJ, Müller-Richter UD, Reichert TE. The human homolog of the Drosophila headcase protein slows down cell division of head and neck cancer cells. Carcinogenesis. 2009;30(10):1678-16 doi: 10.1093/carcin/bgp189
  17. Forutan M et al. Genome-wide  association  and  expression  quantitative  trait  loci in  cattle  reveals  common genes regulating mammalian fertility. Commun Biol. 2024;7(1):724. doi: 10.1038/s42003-024-06403-2
  18. Ghavi Hossein-Zadeh N. An overview of recent technological developments in bovine genomics. Vet Anim Sci. 2024;25:100382. doi: 10.1016/j.vas.2024.100382
  19. Gheller JM et al. Transcriptomic analysis of heifers according to antral follicle count. Theriogenology. 2025;237:178-187. doi: 10.1016/j.theriogenology.2025.02.024
  20. Handcock RC et al. Positive relationships  between  body weight of dairy heifers and their first-lactation and accumulated three-parity lactation production. J Dairy Sci. 2019;102(5):4577-4589. doi: 10.3168/jds.2018-15229
  21. Harvey KM, Cooke RF, Moriel P. Impacts of nutritional management during early postnatal life on long-term physiological and productive responses of beef cattle. Frontiers in Animal Science. 2021;2:730356. doi: 10.3389/fanim.2021.730356
  22. Hong Y et al. Genome-wide association study of reproductive traits in large white pigs. Animals (Basel). 2024;14(19):2874. doi: 10.3390/ani14192874
  23. Igoshi AV et al. Local ancestry and selection in the genomes of Russian black pied cattle. Sci. 2025;7(2):51. doi: 10.3390/sci7020051
  24. Irtyuga O et al. The role of NOTCH pathway genes in the inherited susceptibility to aortic stenosis. J Cardiovasc Dev Dis. 2024;11(7):226. doi: 10.3390/jcdd11070226
  25. Jaunbocus N et al. Eukaryotic    Annu  Rev Biochem. 2025;94(1):1-28. doi: 10.1146/annurev-biochem-080124-012840
  26. Kadam SD et al. Rett syndrome and CDKL5 deficiency disorder: from bench to clinic. Int J Mol Sci. 2019;20(20):5098. doi: 10.3390/ijms20205098
  27. Kadri NK et al. High male specific contribution of the X-chromosome to individual global recombination rate in dairy cattle. BMC Genomics. 2022;23(1):114. doi: 10.1186/s12864-022-08328-8
  28. Karamzade A et al. Identification of a novel truncating variant in AHI1 gene and a brief review on mutations spectrum. Mol Biol Rep. 2021;48(6):5339-5345. doi: 10.1007/s11033-021-06508-5
  29. Kasimanickam RK, Kasimanickam VR, McCann ML. Difference in body weight at breeding affects reproductive performance in replacement beef heifers and carries consequences to next generation heifers. Animals (Basel). 2021;11(10):2800. doi: 10.3390/ani11102800
  30. Khare P et al. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol Ther. 2024;263:108727. doi: 10.1016/j.pharmthera.2024.108727
  31. Kominakis A et al. Combined  GWAS  and  'guilt  by  association'-based  prioritization analysis  identifies  functional  candidate  genes for body size in sheep. Genet Sel Evol. 2017;49(1):41. doi: 10.1186/s12711-017-0316-3
  32. Kosińska-Selbi B et al. Exploring the potential genetic heterogeneity in the incidence of hoof disorders in Austrian fleckvieh and braunvieh cattle. Front Genet. 2020;11:577116. doi: 3389/fgene.2020.577116
  33. Kusaka H, Yamazaki T, Sakaguchi M. Association of the age and bodyweight at first calving with the reproductive and productive performance in one herd of Holstein dairy heifers in Japan. Vet Rec Open. 2022;9(1):e44. doi: 10.1002/vro2.44
  34. Lan Q et al. Genome-wide association analysis identified variants associated with body measurement and reproduction traits in shaziling pigs. Genes (Basel). 2023;14(2):522. doi: 10.3390/genes14020522
  35. Lancaster MA et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat Med. 2011;17(6):726-31. doi: 10.1038/nm.2380
  36. Lawrence TLJ. Growth in Animals. London, Boston: Butterworths; 1980:308
  37. Lehner S, Zerbin I, Doll K, Rehage J, Distl O. A genome-wide association study for left-sided displacement of the abomasum using a high-density single nucleotide polymorphism array. J Dairy Sci. 2018;101(2):1258-1266. doi: 10.3168/jds.2017-13216
  38. Li B et al. Genetic heterogeneity of feed intake, energy-corrected milk, and body weight across lactation in primiparous Holstein, Nordic Red, and Jersey cows. J Dairy Sci. 2018;101(11):10011-10021. doi: 10.3168/jds.2018-14611
  39. Li S et al. Identification of Heilongjiang crossbred beef cattle pedigrees and reveals functional genes related to economic traits based on whole-genome SNP data. Front Genet. 2024;15:1435793. doi: 10.3389/fgene.2024.1435793
  40. Li XX et al. Cadherin-18 loss in prospermatogonia and spermatogonial stem cells enhances cell adhesion through a compensatory mechanism. Zool Res. 2024;45(5):1048-1060. doi: 10.24272/j.issn.2095-8137.2023.373
  41. Liu XX et al. Detecting selection signatures on the X chromosome of the Chinese Debao pony. J Anim Breed Genet. 2018;135(1):84-92. doi: 10.1111/jbg.12314
  42. Ma H et al. TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation. Int J Obes (Lond). 2022;46(8):1544-1555. doi: 10.1038/s41366-022-01151-x
  43. Maezawa S et al. Super-enhancer switching drives a burst in gene expression at the mitosis-to-meiosis transition. Nat Struct Mol Biol. 2020;27(10):978-988. doi: 10.1038/s41594-020-0488-3
  44. Maia TS et al. Early juvenile but not mid-to-late prenatal nutrition controls puberty in heifers but neither impact adult reproductive function. Biol Reprod. 2022;107(4):1035-1045. doi: 10.1093/biolre/ioac123
  45. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122. doi: 10.1186/gb4184
  46. Mao X et al. Genome-wide association studies of growth traits in three dairy cattle breeds using whole-genome sequence data. J Anim Sci. 2016;94(4):1426-37. doi: 10.2527/jas.2015-9838
  47. Martynova E, Yakimova V. Growth and development of cows of different levels of productivity in breeding farms of the Udmurt republic. BIO Web of Conferences. 2020;17:00174. doi: 1051/bioconf/20201700174
  48. Mehtiö T et al. Genetic analyses of metabolic body weight, carcass weight and body conformation traits in Nordic dairy cattle. Animal. 2021;15(12):100398. doi: 10.1016/j.animal.2021.100398
  49. Melo TP et al. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci. 2018;96(10):4087-4099. doi: 10.1093/jas/sky289
  50. Nakayama K, Nakayama K. Cip/Kip cyclin-dependent kinase inhibitors: brakes of  the  cell  cycle engine during development. Bioessays. 1998;20(12):1020-102 doi: 10.1002/(SICI)1521-1878(199812)20:12<1020::AID-BIES8>3.0.CO;2-D
  51. Navoshki F et al. Identification of selection signatures related to johne's disease in Iranian holstein cows using genomic data. Research on Animal Production. 2024;15(3):30-41. doi: 10.61186/rap.15.3.30
  52. Neves HH, Carvalheiro R, Queiroz SA. Genetic and environmental heterogeneity of residual  variance  of weight traits in Nellore beef cattle. Genet Sel Evol. 2012;44(1):19. doi: 10.1186/1297-9686-44-19
  53. Ogunbawo AR et al. Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle. Front Genet. 2025;16:1549284. doi: 10.3389/fgene.2025.1549284
  54. Owens FN, Dubeski P, Hanson CF. Factors that alter the growth and development of ruminants. J Anim Sci. 1993;71(11):3138-3150. doi: 10.2527/1993.71113138x
  55. Pan C et al. Genome-wide identification of cyclin-dependent kinase (CDK) genes affecting adipocyte differentiation in cattle. BMC Genomics. 2021;22(1):532. doi: 10.1186/s12864-021-07653-8
  56. Persichilli C et al. Exploring genome-wide differentiation and signatures of selection in Italian and North American Holstein populations. J Dairy Sci. 2023;106(8):5537-5553. doi: 10.3168/jds.2022-22159
  57. Ptakova A, Vlachova V. Thermosensing ability of TRPC5: current knowledge and unsettled questions. J Physiol Sci. 2024;74(1):50. doi: 10.1186/s12576-024-00942-3
  58. Reiner O et al. The evolving doublecortin (DCX) superfamily. BMC Genomics. 2006;7:188. doi: 10.1186/1471-2164-7-188
  59. Ren J et al. Application of GWAS and mGWAS in livestock and poultry breeding. Animals (Basel). 2024;14(16):2382. doi: 10.3390/ani14162382
  60. Robertson MJ et al. Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biol. 2020;18(1):103. doi: 10.1186/s12915-020-00826-z
  61. Ryabova AE et al. Search for ancient selection traces in faverolle chicken breed (Gallus gallus domesticus) based on runs of homozygosity analysis. Animals (Basel). 2025;15(10):1487. doi: 10.3390/ani15101487
  62. Sadler KE et al. Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Sci Transl Med. 2021;13(595):eabd7702. doi: 10.1126/scitranslmed.abd7702
  63. Sakashita A et al. Polycomb protein SCML2 mediates paternal epigenetic inheritance through sperm chromatin. Nucleic Acids Res. 2023;51(13):6668-6683. doi: 10.1093/nar/gkad479
  64. Scalia P et al. The DTX protein family: An Emerging Set of E3 Ubiquitin Ligases in Cancer. Cells. 2023;12(13):1680. doi: 10.3390/cells12131680
  65. Sindhu P et al. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. Zygote. 2024;32(3):190-206. doi: 10.1017/S0967199424000224
  66. Snelling WM et al. Genetic correlations among weight and cumulative productivity of crossbred beef cows. J Anim Sci. 2019;97(1):63-77. doi: 10.1093/jas/sky420
  67. Sun S et al. RNA sequencing and differential expression reveals the effects of serial oestrus synchronisation on ovarian genes in dairy goats. Reprod Fertil Dev. 2018;30(12):1622-1633. doi: 10.1071/RD17511
  68. Sun Y et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600-604. doi: 10.3109/10799893.2015.1030412
  69. Taye M et al. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genet. 2017;18(1):11. doi: 10.1186/s12863-016-0467-1
  70. Wang F et al. A novel  31bp  deletion  within  the  CDKL5  gene  is significantly associated with growth traits in Dezhou donkey. Anim Biotechnol 2023;34(3):503-507. doi: 10.1080/10495398.2021.1977653
  71. Wathes DC. Developmental programming of fertility in cattle-is it a cause for concern. Animals (Basel). 2022;12(19):2654. doi: 10.3390/ani12192654.
  72. Wichman L et al. Dynamic expression of long noncoding RNAs reveals their potential roles in spermatogenesis and fertility. Biology of Reproduction. 2017;97(2):313-323. doi: 10.1093/biolre/iox084
  73. Yin T, König S. Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. Genet Sel Evol. 2019;51(1):4. doi: 10.1186/s12711-018-0444-4
  74. Zeng L et al. Identification of a novel human doublecortin-domain-containing gene (DCDC1) expressed mainly in testis. J Hum Genet. 2003;48(7):393-6. doi: 10.1007/s10038-003-0033-3
  75. Zhao XW et al. Alterations of the circular RNA profile in the jejunum of neonatal calves in response to colostrum and milk feeding. J Dairy Sci. 2019;102(8):7038-7048. doi: 10.3168/jds.2018-15942
  76. Zhou Z et al. Detection of selection signatures underlying production and adaptive traits based on whole-genome sequencing of six donkey populations. Animals. 2020;10(10):1823. doi: 10.3390/ani10101823
  77. Zimmermann K et al. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci USA. 2011;108(44):18114-18119. doi: 10.1073/pnas.1115387108

Information about the authors:

Marina V Pozovnikova, Cand. Sci. (Biology), Senior Researcher Laboratory of Molecular Genetics, Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the LK Ernst Federal Research Center for Animal Husbandry, St. Petersburg, Tyarlevo, Moscow highway, 55a, 196601, tel.: +7 (812) 451-76-63.

Elena A Romanova, Researcher Laboratory of Population Genetics and Animal Breeding, Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the LK Ernst Federal Research Center for Animal Husbandry, St. Petersburg, Tyarlevo, Moscow highway, 55a, 196601, tel.: +7 (960)250-18-98.

Olga V Tulinova, Cand. Sci. (Agriculture), Leading Researcher Laboratory of Population Genetics and Animal Breeding, Russian Research Institute of Farm Animal Genetics and Breeding – ranch of the LK Ernst Federal Research Center for Animal Husbandry, St. Petersburg, Tyarlevo, Moscow highway, 55a, 196601, tel.: +7-921-305-80-06.

Yuri S Shcherbakov, Cand. Sci. (Biology), Junior Researcher Laboratory of Molecular Genetics, Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the LK Ernst Federal Research Center for Animal Husbandry, St. Petersburg, Tyarlevo, Moscow highway, 55a, 196601, tel.: +7-999-524-47-84.

Аnastasia I Azovtseva, postgraduate student, junior researcher Laboratory of Molecular Genetics, Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the LK Ernst Federal Research Center for Animal Husbandry, St. Petersburg, Tyarlevo, Moscow highway, 55a, 196601, tel.: +7-981-728-86-92.

Alexander A Sermyagin, Cand. Sci. (Agriculture), Director, Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the LK Ernst Federal Research Center for Animal Husbandry, St. Petersburg, Tyarlevo, Moscow highway, 55a, 196601, tel.: +7 (812) 451-76-63, +7 (812)451-65-19.

The article was submitted 09.10.2025; approved after reviewing 21.11.2025; accepted for publication 15.12.2025.

Download