Miroshnikov S.A., Zavyalov O.A., Frolov A.N.

Effect of lead concentration in hair on elemental interrelation and milk production of the Holstein cows

DOI: 10.33284/2658-3135-102-1-54

UDC 546.81:637.62:636.22/.28.082.13

Effect of lead concentration in hair on elemental interrelation and milk production of the Holstein cows

S.A. Miroshnikov1,2, O.A. Zavyalov1, A.N. Frolov1

1FSBSI«Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences»

2 FSBEI HE «Orenburg State University»

Summary. To assess the effect of lead level in hair on elemental status and milk productivity, a study was conducted on Holstein cows of the first lactation, with a live weight of 500-550 kg. The elemental status was studied in the period of increasing the milk yield within 30-40 days after calving.

At the first stage of research, the elemental composition of hair of the Holstein cows (n=198), bred in one of Russian regions – the Leningrad region, was studied; on the basis of these studies, percentile distributions of concentrations of chemical elements in hair were established and «physiological standard» was adopted.

At the second stage of research the dependence of lead level in hair on the elemental status and dairy productivity on clinically healthy cows of the Holstein breed in the conditions of CJSC «Gatchinskoe» of the Leningrad Region (n=47) and LLC «AgrofirmPromyshlennaya» of the Orenburg Region (n=50)was assessed. For this, based on lead level calculations, animals were divided into six groups, three groups in each farm: I and IV groups – up to the 25th percentile, II and V – within the boundaries of the 25-75th percentile, III and VI– is above the 75th percentile.

The elemental composition of the hair was determined by 25 chemical elements by atomic emission and mass spectrometry.

It was established that the total content of toxic trace elements in hair of animals of group III was higher by 73.8% (P£0.01) and 40.0%, and essential – by 2.46 times (P£0.05) and 57.7% (Р£0.05), with a decrease of 1% of the average daily milk yield by 24.6 and 4.2%, fat – 19.8 and 3.9%, protein – 12.5 and 2.6%, SOMO – 10.5 and 5.0%, respectively, compared with the I and II groups.

A similar pattern was obtained in the second farm, there the concentration of lead increases, and toxic and essential microelements also increase

An assessment of correlation relationships between the concentrations of toxic and essential trace elements in animal hair revealed an increase in the number of reliable bonds with increasing lead concentration from 0.0245-0.247 to 1.49-3.0 µg /g from 7-8 to 15.

Based on the above, a conclusion was made about the prospects of assessing the level of toxic elements in predicting the milk production of livestock.

Key words: cows, Holstein breed, elemental status, hair, lead concentration, toxic elements, milk productivity.

References

  1. Ciobanu C., Slencu B.G., Cuciureanu R. Estimation of dietary intake of cadmium and lead through food consumption // Rev Med ChirSoc Med Nat Iasi. 2012. Apr-Jun. V. 116(2). P. 617-623.
  2. Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm / R. Pilarczyk, J. Wójcik, P. Czerniak, P. Sablik, B. Pilarczyk, A. Tomza-Marciniak // Environ Monit Assess. 2013. Oct. 185(10). P. 8383-8392. doi: 10.1007/s10661-013-3180-9. Epub 2013. Apr 10.
  3. High toxic metal levels in scalp hair of infants and children. Biomed / H. Yasuda, T. Yonashiro, K. Yoshida, T. Ishii, T. Tsutsui // Res. Trace Elem. 2005. 16. P. 39-45.
  4. High accumulation of aluminium in hairs of infants and children / H. Yasuda, K. Yoshida, M. Segawa, R. Tokuda, Y. Yasuda, T. Tsutsui // Biomed. Res. Trace Elem. 2008. 19. Р. 57-62.
  5. Two age-related accumulation profiles of toxic metals / H. Yasuda, K. Yoshida, Y. Yasuda, T. Tsutsui // Curr. Aging Sci. 2012. 5. P. 105-111. doi: 10.2174/1874609811205020105.
  6. Ordemann J.M., Austin R.N. Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health // Metallomics. 2016. Jun 1. 8(6). Р. 579-588. doi: 10.1039/c5mt00300h.
  7. Advisory Committee on Childhood Lead Poisoning Prevention, of the Centers for Disease Control and Prevention, low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention, report to the CDCP, ACCLPP: Atlanta, GA, USA, 2012. P. 1-54.
  8. Centers for Disease Control and Prevention (CDC) CDC National Surveillance Data (1997-2009), National Centers for Environmental Health 2012. [(accessed on 6 November 2018)]. Available online: http://www.cdc.gov/nceh/lead/data/national.htm.
  9. Effects of ascorbic acid on cadmium-induced oxidative stress and performance of broilers / Z. Erdogan, S. Erdogan, S. Celik, A. Unlu // Biological Trace Element Research. 2005. 104(1). P. 19-31. doi: 10.1385/BTER:104:1:019.
  10. Effect of garlic (Allium sativum L.) extract on tissue lead level in rats / S.K. Senapati, S. Dey, S.K. Dwivedi, D. Swarup // Journal of Ethnopharmacology. 2001. 76(3). Р. 229-232. doi: 10.1016/S0378-8741(01)00237-9.
  11. Effects of Brn-3a protein and RNA expression in rat brain following low-level lead exposure during development on spatial learning and memory / W. Chang, J. Chen, Q.Y. Wei, X.M. Chen // Toxicology Letters. 2006. 164(1). Р 63-70. doi: 10.1016/j.toxlet.2005.11.011.
  12. Cellular and Molecular Biology of Metals / Rudolfs K. Zalups, James Koropatnick (Eds.). Boca Raton-London-New York: CRC Press, Taylor & Francis Group, 2010. 425 p.
  13. Hamilton J.D., O’Flaherty E.J. Influence of lead on mineralization during bone growth // Fundamental and Applied Toxicology. 1995. 26(2). Р. 265-271. doi: 10.1006/faat.1995.1097.
  14. Maboeta M.S., Reinecke A.J., Reinecke S.A. Effects of low levels of lead on growth and reproduction of the Asian Earthworm Perionyxexcavatus (Oligochaeta) // Ecotoxicology and Environmental Safety. 1999. 44(3). Р. 236-240. doi: 10.1006/eesa.1999.1797.
  15. Shabani A., Rabbani A. Lead nitrate induced apoptosis in alveolar macrophages from rat lung // Toxicology. 2000. 149(2-3). Р. 109-114. doi: 10.1016/S0300-483X(00)00232-8.
  16. Ercal N., Gurer-Orhan H., Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage // Current Topics in Medicinal Chemistry. 2001. 1(6). Р 529-539. doi: 10.2174/1568026013394831.
  17. Ahamed M., Siddiqui M. K. J. Low level lead exposure and oxidative stress: current opinions // ClinicaChimicaActa. 2007. 383(1-2). Р. 57-64. doi: 10.1016/j.cca.2007.04.024.
  18. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice / J. Xu, L.-J. Lian, C. Wu, X.-F. Wang, W.-Y. Fu, L.-H. Xu // Food and Chemical Toxicology. 2008. 46(5). Р. 1488-1494. doi: 10.1016/j.fct.2007.12.016.
  19. Newairy A.-S. A., Abdou H. M. Protective role of flax lignans against lead acetate induced oxidative damage and hyperlipidemia in rats // Food and Chemical Toxicology. 2009. 47(4). Р. 813-818. doi: 10.1016/j.fct.2009.01.012.
  20. Liu C.M., Ma J.Q., Sun Y.Z. Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead // Experimental and Toxicologic Pathology. 2012. 64(6). Р. 575-582. doi: 10.1016/j.etp.2010.11.016.
  21. Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development / D. Bellinger, A. Leviton, C.Waterneaux, H.L. Needleman, M.N. RabinowitzEngl // J. Med. 1987. V. 316. Р. 1037-1043.
  22. Lead exposure and neurobehavioral development in later infancy / K. Dietrich, P.A. Succop, R.L. Bornschein, P.B. Hammond, K. Krafft // Environ. Health Perspect. 1990. 89. Р. 13-19.
  23. Low-level lead exposure and children’s cognitive function in the preschool years / D. Bellinger, J. Sloman, A. Leviton, M. Rabinowitz, H.L. Needleman, C. Waternaux // Pediatrics. 1991. Feb. 87(2).Р. 219-227.

24.The content of essential and toxic elements in the hair of the mane of the trotter horses depending on theirspeed / V. Kalashnikov, A. Zajcev, M. Atroshchenko, S. Miroshnikov, A. Frolov, O.Zav’yalov, L. Kalin-kova, T. Kalashnikova // Environ SciPollut Res Int. 2018. May 24. P. 21961-21967. doi: 10.1007/s11356-018-2334-2.

  1. Yasuda H., Tsutsui T. Assessment of Infantile Mineral Imbalances in Autism Spectrum Disorders (ASDs) // J Environ Res Public Health. 2013. Nov. 10(11). Р. 6027-6043.
  2. Skalnaya M.G., Demidov V.A., Skalny A.V. About the limits of physiological (normal) content of Ca, Mg, P, Fe, Zn and Cu in human hair // Trace Elements in Medicine. 2003. Vol. 4(2). P. 5-10.
  3. The reference intervals of hair trace element content in hereford cows and heifers (Bostaurus) / S.A. Miroshnikov, O.A. Zavyalov, A.N. Frolov, I.P. Bolodurina, A.V. Skalny, V.V. Kalashnikov, A.R. Gra-beklis, A.A. Tinkov // Biological Trace Element Research. 2017. Vol. 180. No. 1. Р. 56-62.
  4. Method of sampling beef cattle hair for assessment of elemental profile / S. Miroshnikov, A. Kharlamov, O. Zavyalov, A. Frolov, G. Duskaev, I. Bolodurina, O. Arapova // Pakistan Journal of Nutrition. 2015. V. 14. № 9. P. 632-636.
  5. International Standard 141C. Whole milk-Determination of milkfat, protein and lactose content-Guidance on the operation of mid-infrared instruments. Brussels, Belgium: International Dairy Federation, 2000. 12 p.
  6. Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows / D. Cygan-Szczegielniak, M. Stanek, E. Giernatowska, B. Janicki // Folia Biol (Krakow). 2014. 62(3). Р. 163-169.
  7. Contamination of cows milk by heavy metal in Egypt / F. Malhat, M. Hagag, A. Saber, A.E. Fayz // Bulletin of Environmental Contamination and Toxicology. 2012. 88(4). P. 611-613. doi: 10.1007/s00128-012-0550-x.
  8. Simultaneous assessment of zinc, cadmium, lead and copper in poultry feeds by differential pulse anodic stripping voltammetry / S.A. Mahesar, S.T. Sherazi, A. Niaz, M.I. Bhanger, S. Uddin, A. Rauf // Food and Chemical Toxicology. 2010. 48(8-9). Р. 2357-2360. doi: 10.1016/j.fct.2010.05.071.
  9. The long-term effects of exposure to low doses of lead in childhood / H.L. Needleman, A. Schell, D. Bellinger, A. Leviton, E.N. Allred // An 11-year follow up report. N. Engl. J. Med. 1990. 322. Р. 83-88. doi: 10.1056/NEJM199001113220203.
  10. Binns H.J., Campbell C., Brown M.J. Interpreting and managing blood lead levels of less than 10 micro g/dL in children and reducing childhood exposure to lead: Recommendations of the centers for disease control and prevention advisory committee on childhood lead poisoning prevention // Pediatrics. 2007. 120. Р. 1285-1298. doi: 10.1542/peds.2005-1770.
  11. Bellinger D.C. Lead neurotoxicity and socioeconomic status: Conceptual and analytical issues. Neurotoxicology. 2008. 29. Р. 828-832. doi: 10.1016/j.neuro.2008.04.005.
  12. Low-level prenatal and postnatal blood lead (Pb) exposure and adrenocortical responses to acute stress inchildren. Environ / B.B. Gump, P. Stewart, J. Reihman, E. Lonky, T. Darvill, P.J. Parsons, D.A. Granger // Health Perspect. 2008. 116. Р. 249-255.
  13. Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control / J.T. Nigg, G.M. Knottnerus, M.M. Martel, M. Nikoas, V. Cavanagh, W. Karmaus, M.D. Rappley // Biol. Psychiatry. 2008. 63. P. 325-331. doi: 10.1016/j.biopsych.2007.07.013.
  14. Rabinowitz M.B. Toxicokinetics of bone lead // Environ. Health Perspect. 1990. 91. Р. 33-37.
  15. Lead: intestinal absorption and bone mobilization during lactation / M. Maldonado-Vega, J. Cerbón-Solorzano, A. Albores-Medina, C. Hernández-Luna, J.V. Calderón-Salinas // Hum ExpToxicol. 1996. Nov. 15(11). Р. 872-877.
  16. Thompson G.N., Robertson E.F., Fitzgerald S. Lead mobilization during pregnancy // Med. J. Aust. 1985. 143. Р. 131.
  17. Effects of pregnancy on the inter-individual variations in blood levels of lead, cadmium and mercury / C. Bonithon-Kopp, G. Huel, C. Grasmick, H. Sarmini, T. Moreau // Biol. Res. Preg. 1986. 7. Р. 37-42.
  18. Silbergeld E.K. Lead in bone: implications for toxicology during pregnancy and lactation // Environ Health Perspect. 1991. Feb. 91. Р. 63-70.
  19. Epidemiology of osteoporosis and osteoprorotic fractures / S.R. Cummings, J.L. Kelsey, M.C. Nevitt, K.J. O’Dowd // Epidemiol. Rev. 1985. 7. Р. 178-208.
  20. Silbergeld E.K., Schwartz J., Mahaffey K. Lead and osteoporosis: mobilization of lead from bone in postmenopausal women // Environ. Res. 1988. 47. Р. 79-94.
  21. Kośla T., Skibniewska E.M., Skibniewski M. The state of bioelements in the hair of free-ranging European bisons from Białowie a Primeval Forest // Pol J Vet Sci. 2011. 14(1). Р. 81-86.

46.Hairtracemetal levelsand environmentalexposure / D.I. Hammer, J.F. Finklea, R.H. Hend-ricks, C.M. Shy, R.J. Horton // American Journal of Epidemiology. 1971. 93. Р. 84-92.

  1. Lead, cadmium, arsenic, and mercury combined exposure disrupted synaptic homeostasis through activating the Snk-SPAR pathway / F. Zhou, J. Xie, Sh. Zhang, G.Yin,Y.Gao, Y. Zhang, D. Bo, Z. Li, S. Liu, Ch. Feng, G. Fan // Ecotoxicology and Environmental Safety. 2018. V. 163. 15 November. P. 674-684.https://doi.org/10.1016/j.ecoenv.2018.07.116.
  2. Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows / R.L. Wang, J.G. Liang, L. Lu, L.Y. Zhang, S.F. Li, X.G // Luo. Biol Trace Elem Res. 2013. 152(1). Р. 16-24. doi: 10.1007/s12011-012-9585-4.
  3. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: a meta-analysis / A.R. Rabiee, I.J. Lean, M.A. Stevenson, M.T. Socha // J Dairy Sci. 2010. 93(9). Р. 4239-4251. doi: 10.3168/jds.2010-3058.
  4. Refined crystal structure  of  Cd,  Zn metallothionein at 2.0 A resolution / A.H. Robbins, D.E. McRee, M. Williamson, S.A. Collett, N.H. Xuong, W.F. Furey, B.C. Wang, C.D. Stout // J Mol Biol. 1991. 221. Р. 1269-1293.
  5. Wong D.L., Merrifield-MacRae M.E., Stillman M.J. Lead(II) Binding in Metallothioneins // Lead: Its Effects on Environment and Health. Series: Metal Ions in Life Sciences.Volume 17 / Eds.: A. Sigel, H. Sigel, Roland K.O. Sigel. Berlin-Boston: De Gruyter,2017. P. 241-270. https://doi.org/10.1515/ 9783110434330-009.
  6. Metallothionein-I and -II knock-out mice are sensitive to cadmium-induced liver mRNA expression of c-jun and p53 / H. Zheng, J. Liu, K.H. Choo, A.E. Michalska, C.D. Klaassen // ToxicolApplPharmacol. 1996. 136. Р. 229-235.
  7. Petering D.H., Krezoski S., Tabatabai N.M. Metallothionein toxicology: metal ion trafficking and cellular protection // Metallothioneins and Related Chelators. Metal Ions in Life Sciences.Volume 5 / Eds.: A. Sigel, H. Sigel, Roland K.O. Sigel. United Kingdom: RSC Publishing, Cambridge. Р. 353-397.
  8. Accumulation and detoxification of metals and arsenic in tissues of cattle (Bostaurus), and the risks for human consumption / S. Roggeman, G. de Boeck, H. de Cock, R. Blust, L. Bervoets // Sci Total Environ. 2014. Jan 1. Vol. 466-467. Р 175-184. doi: 10.1016/j.scitotenv.2013.07.007. Epub 2013 Jul 31.
  9. Correlations of trace element levels in the diet, blood, urine, and feces in the Chinese male / Y. Wang, Y.L. Ou, Y.Q. Liu, Q. Xie, Q.F. Liu, Q. Wu, T.Q. Fan, L.L. Yan, J.Y. Wang // Biol Trace Elem Res. 2012. Feb. 145(2). Р. 127-135. doi: 10.1007/s12011-011-9177-8. Epub 2011 Aug 26.
  10. Kossaibati M.A., Esslemont R.J. The costs of production diseases in dairy herds in England // Vet. J. 1997. 154. Р. 41-51. doi: 10.1016/S1090-0233(05)80007-3.
  11. Undesirable side effects of selection for high production efficiency in farm animals: a review / W. Rauw, E. Kanis, E. Noordhuizen-Stassen, F. Grommers // Livest. Prod. Sci. 1998. 56. Р. 15-33. doi: 10.1016/S0301-6226(98)00147-X.
  12. Long-term trends in the metabolic profile test results in German Holstein dairy herds in Thuringia, Germany / K. Donat, W. Siebert, E. Menzer, Söllner- S. Donat // TierarztlPraxAusg G GrosstiereNutztiere. 2016. 44(2). Р. 73-82. doi: 10.15653/TPG-150948. Epub 2016 Mar 21. [ArticleinGerman].

    Miroshnikov Sergey Aleksandrovich, doctor of biological sciences, corresponding member of the Russian Academy of Sciences, director FSBSI «Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences» 460000, Russia, Orenburg, ul. 9 Yanvarya, 29, tel.: 8(3532)43-46-41; FSBEI HE «Orenburg State University», 460018, Russia, Orenburg, pr. Pobedy, 13, e-mail: vniims.or@mail.ru

    Zavyalov Oleg Aleksandrovich, candidate of agricultural sciences, Department for Beef Cattle Technology and Beef Production FSBSI «Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences», 460000, Russia, Orenburg, ul. 9 Yanvarya, 29, tel.: 8(3532)43-46-78, e-mail: oleg-zavyalov83@mail.ru

    Frolov Alexey Nikolaevich, candidate of agricultural sciences, Department for Beef Cattle Technology and Beef Production FSBSI «Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences», 460000, Russia, Orenburg, ul. 9 Yanvarya, 29, tel.: 8(3532)43-46-78, e-mail: forleh@mail.ru

Download