Sizova Elena, Yausheva Elena

 DOI: 10.33284/2658-3135-102-1-6

UDC636.5:577.17

 Comparative productivity of broiler chickens injected with variously sized ultrafine iron particles

E.A. Sizova1,2, E.V. Yausheva1

1 FSBSI«Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences»

2 FSBEI HE «Orenburg State University»

 Summary. Studies were conducted to determine the effect of various size ultradisperse preparations of elemental iron on the productivity and metabolism of broiler chickens. Ultrafine iron particles were synthesized by high-temperature condensation. The test using the genetically engineered luminescent strain of Echerichia coli K12 TG1 (in vitro) did not reveal the toxicity of ultrafine particles and their agglomerates. In the experiment on 120 Broiler chickens «Smena 7» (in vivo), a comparative assessment of the effectiveness of a single intramuscular injection of iron preparations with a particle size of 80±5 nm (ultrafine particles); 923.7±29.6 nm (agglomerates of ultrafine particles) and 9.8±0.4 μm (microparticles) was made. The use of preparations allowed to increase the live weight of chickens. The maximum difference with the control group was achieved using ultrafine particles on day 4 after injection – 9.8 % (P≤0.01); agglomerates – on day 17 it was 4.97 % (P≤0.01); microparticles – on the 17th day 8.5 % (P≤0.01). Injections of iron preparations were accompanied by an increase in protein concentration in daily increase in chickens: with the use of ultrafine particles by 1.3-4.3 g, agglomerates by 0.6-1.4, microparticles by 0.1-1.4 The use of iron preparations was accompanied by an increase in the arginine content in liver of chickens compared with the control. After using ultrafine particles the increase was by 2.25 % (P≤0.05) – a day later, by 3.78 % (P≤0.05) – 7 days after the injection. After using agglomerates for 7 days– it increased by 2.08 % (P≤0.05), microparticles – after 21 days by 3.86 % (P≤0.05). Thus, for different particles of elemental iron, similar biological effects were shown, increasing with decreasing particle size. Further research requires solutions for the combined use of ultrafine particles of metals and arginine.

Key words: broiler chickens, ultrafine particles, iron preparations, productivity.

References

  1. Comparison of short-term toxicity between Nano-Se and selenite in mice / J. Zhang, H. Wang, X. Yan, L. Zhang // Life Sci. 2005. 21. 76(10). P. 1099-1109.
  2. Hao L., Wang Z., Xing B. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinuscarpio) // J EnvironSci (China). 2009. 21(10). P. 1459-1466.
  3. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes / H. Wang, X. Sun, Z. Liu, Z. Lei // Nanoscale. 2014. Vol. 6. Issue 12. P. 6577-6584.
  4. Impact of zn nanoparticles on growth, survival and activity of antioxidant enzymes in eisenia fetida / S. Lebedev, E. Yausheva, L. Galaktionova, Е. Sizova // Modern Applied Science. 2015. Vol. 9. No. 9. P. 34-44.
  5. Yausheva E., Sizova Е., Miroshnikov S. Evaluation of biogenic characteristics of iron nanoparticles and its alloys in vitro // Modern Applied Science. 2015. Vol. 9. No. 9. P. 65-71.
  6. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles / F. Rohner, F.O. Ernst, M. Arnold, M. Hilbe, R. Biebinger, F. Ehrensperger, S.E. Pratsinis, W. Langhans, R.F. Hurrell, M.B. Zimmermann // J Nutr. 2007. 137(3). P. 614-619.
  7. Element status in rats at intramuscular injection of iron nanoparticles / E.A. Sizova, E.V. Yausheva,S.A. Miroshnikov, S.V. Lebedev, G.K. Duskaev // Biosciences Biotechnology Research Asia. 2015. Vol. 12. P. 119-127.
  8. Assessment of morphological and functional changes in organs of rats after intramuscular introduction of iron nanoparticles and their agglomerates / E. Sizova, S. Miroshnikov, E. Yausheva, V. Polyakova // BioMed Research International. 2015. Vol. 2015. http://dx.doi.org/10.1155/2015/243173.
  9. World Health Organization. Global Database on Anaemia. World Health Organization, Geneva, Switzerland, 2008.
  10. Tolerability of different oral iron supplements: a systematic review / M.J. Cancelo-Hidalgo, C. Castelo-Branco, S. Palacios, J. Haya-Palazuelos, M. Ciria-Recasens, J. Manasanch, L. Pérez-Edo // Curr. Med. Res. Opin. 2013. No. 29. P. 291-303.
  11. Daily oral iron  supplementation  during pregnancy / P. Peña-Rosas Juan, M. De-Regil Luz, T. Dowswell, E. Viteri Fernando // Cochrane Database of Systematic Reviews. UK: Chichester, John Wiley & Sons, Ltd., 2012.
  12. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire / M.B. Zimmermann, C. Chassard, F. Rohner, N′Goran E., C. Nindjin, A. Dostal, J. Utzinger, H. Ghattas, C. Lacroix, R.F. Hurrell // Am. J. Clin. Nutr. 2010. No. 92. P. 1406-1415.
  13. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats / A. Dostal, C. Chassard, F.M. Hilty, M.B. Zimmermann, T. Jaeggi, S. Rossi, C. Lacroix // J. Nutr. 2012. No. 142. P. 271-277.
  14. The effect of zinc nanoparticles on wound healing processes / N.N. Glushchenko, O.A. Bogoslovskaya, I.P. Olkhovskaya, T.A. Lobayeva // Bioantioxidant: materials of the VI Intern. conf. M., 2002. P. 114-116.
  15. Biological effects connected with metal nanoparticles entry into organism / E. Sizova, S. Miroshnikov, V. Polyakova, N. Glushchenko, A. Skalny // Ann BiolClin. 2013. Vol. 71. No. 5. P. 568-569.
  16. Growth enhancement by intramuscular injection of elemental iron nano- and microparticles / E. Sizova, E. Yausheva, D. Kosyan,  S. Miroshnikov //  Modern  Applied  Science. 2015. Vol. 9. No. 9. P. 17-26.
  17. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice / Mohamad F. Aslam, David M. Frazer, NunoFaria, Sylvaine F. A. Bruggraber, Sarah J. Wilkins, Cornel Mirciov, Jonathan J. Powell,Greg J. Anderson, and Dora I. A. Pereira // FASEB J. 2014. 28(8). P. 3671-3678.
  18. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation / F.M. Hilty, M. Arnold, M. Hilbe, A. Teleki, J.T. Knijnenburg, F. Ehrensperger, R.F. Hurrell, S.E. Pratsinis, W. Langhans, M.B. Zimmermann // NatNanotechnol. 2010. 5(5). P. 374-380. doi: 10.1038/nnano.2010.79.
  19. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice / L. Yang, H. Kuang, W. Zhang, Z.P. Aguilar, Y. Xiong, W. Lai, H. Xu, H. Wei // Nanoscale. 2014. 11. 7(2). 625-636. doi: 10.1039/c4nr05061d.
  20. Sizova E.A. Comparative characteristics of biological effects of different-sized copper and iron nanoparticles // Bulletin of russian agricultural science. 2017. No. 3. P. 13-17.
  21. Sizova E.A., Miroshnikov S.A., Yausheva E.V.Effect of zinc-containing nanoparticles on cytomorphological and biochemical parameters in rats// Trace Elements and Electrolytes. 2018. Vol. 35. No. 4. P. 215-217.
  22. Nano-sized and micro-sized polystyrene particles affect phagocyte function / B. Prietl, C. Meindl, E. Roblegg, T.R. Pieber, G. Lanzer, E. Fröhlich // Cell Biology and Toxicology. 2014. 30(1). P. 1-16. doi: 10.1007/s10565-013-9265-y.
  23. Installation for obtaining and studying physicochemical properties of metal nanoparticles / A.N. Zhigach, I.O. Leipunsky, M.L. Kuskov, N.I. Stoenko, V.B. Storozhev // Instruments and Experimental Technique. 2000. No. 6. P. 122.
  24. Deryabin D.G., Polyakov E.G. The influence of human blood serum on the level of luminescence of natural and recombinant luminescent bacteria // Bulletin of experimental biology and medicine. 2004. No. 9. P. 311.
  25. Recommendations for feeding poultry / V.I. Fisinin, Sh.A. Imangulov, I.A. Yegorov, T.M. Okolelova et al. Sergiev Posad, 2000. 67 p.
  26. Sipailova O.Yu., Lebedev S.V., Sizova E.A. Effect of fine iron powder on the morphofunctional state of the spleen (experimental study) // Questions of biological, medical and pharmaceutical chemistry. 2011. Vol. 9. No. 8. P. 43-46.
  27. Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats / L.M. Faddah, N.A. Abdel Baky, N.M. Al-Rasheed, N.M. Al-Rasheed, A.J. Fatani, M. Atteya // BMC Complement Altern Med. 2012. 2. 12. Р. 60. doi: 10.1186/1472-6882-12-60.
  28. Oxidative stress induced by zero-valent iron nanoparticles and Fe (II) in human bronchial epithelial cells / C.R. Keenan, R. Goth-Goldstein, D. Lucas, D.L. Sedlak // Environ Sci Technol. 2009. 15. 43(12). P. 4555-4560.
  29. Ultrafine particulate pollutants induce oxidative stress and mitochrondrial damage / N. Li, C. Sioutas, A. Cho, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, A. Nel // Environ Health Perspect. 2003. 111. P. 455-460.
  30. Role of oxidative damage in toxicity of particulates / P. Møller, N.R. Jacobsen, J.K. Folkmann, P.H. Danielsen, L. Mikkelsen, J.G. Hemmingsen, L.K. Vesterdal, L. Forchhammer, H. Wallin, S. Loft // Free Radic Res. 2010. 44(1). P. 1-46. doi: 10.3109/10715760903300691.
  31. The biological activity of ions, nano- and microparticles of Cu and Fe in the test of inhibition of bacterial bioluminescence / D.G. Deryabin, E.S. Aleshina, T.D. Deryabina, L.V. Efremova // Questions of biological, medical and pharmaceutical chemistry. 2011. No. 6. P. 31-36.
  32. Comparative evaluation of acute toxicity of nanoparticles of zinc, copper and their nanosystems using stylonychia mytilus / E. Rusakova, D. Kosyan, E. Sizova, S. Miroshnikov, O. Sipaylova // Oriental Journal of Chemistry. 2015. Special-Issue1.13. P. 105-112.http://dx.doi.org/10.13005/ojc/31.Special-Issue1.13
  33. Comparative evaluation of the toxicity of iron and its oxides nanoparticles using stylonchia mytilus / D.B. Kosyan, S.A. Miroshnikov, E.A. Sizova, E.V. Yausheva, E.A. Rusakova, S.V. Notova, A.M. Korotkova // AACL Bioflux. 2015. Т. 8. No. 3. P. 453-460.
  34. Impact of nanoparticles of heavy metals and their oxides on stylonychia mytilus / D. Kosyan, E. Rusakova, E. Sizova, S. Miroshnikov, A. Skalniy // Ecology, Environment and Conservation. 2015. Vol. 21. Nov. 2015. Suppl. Issue. P. 113-119.
  35. Iron nanoparticles as a food additive for poultry / I.N. Nikonov, Y.G. Folmanis, G.E. Folmanis, L.V. Kovalenko, G.Y. Laptev,  I.A. Egorov, V.I. Fisinin, I.G. Tananaev // DoklBiol Sci. 2011. 440. P. 328-331. doi: 10.1134/S0012496611050188.
  36. Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages / Shann S. Yu, Cheryl M. Lau, Susan N. Thomas, W. Gray Jerome, David J Maron, James H. Dickerson, Jeffrey A. Hubbell, and Todd D. Giorgio // J. Nanomedicine. 2012. 7. P. 799-813. doi: 10.2147/IJN.S28531
  37. Miroshnikov S.A. Transformation of Blaxter’s Law for Determining the Amount of Work by an Organism for Building Body Tissue // Russian Agricultural Sciences. 2008. Vol. 34. No. 3. P. 193-195.
  38. The metabolic basis of arginine nutrition and pharmacotherapy / N.E. Flynn, C.J. Meininger, T.E. Haynes, G. Wu // Biomed Pharmacother. 2002. 56. P. 427-438. doi: 10.1016/S0753-3322(02)00273-1.
  39. Amino acid composition of the fetal pig / G. Wu, T.L. Ott, D.A. Knabe, F.W. Bazer // J Nutr. 1999. 129. P. 1031-1038.
  40. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens  / A.M. Fouad, H.K. El-Senousey, X.J. Yang, J.H. Yao. // Animal.  2013. 7(8). P. 1239-1245. doi: 10.1017/S1751731113000347.
  41. Suchner U., Heyland D.K., Peter K. Immune-modulatory actions of arginine in the critically ill // Br J Nutr. 2002. 87. S. 121-132. doi: 10.1079/BJN2001465.
  42. The effect of iron nanoparticles on respiratory function of blood / M.Yu. Skorkina, M.Z. Fedorova, E.A. Sladkova, R.V. Derkachev, N.A. Zabinyakov // Bulletin of Yaroslavl Pedagogical University. 2010. No. 2. P. 101-106.
  43. Nemmar A., Melghit K., Ali B.H. The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO (2) nanorods in rats // Exp. Biol. Med. 2008. Vol. 233(5). P. 610-619.
  44. The effect of titanium dioxide and silicon dioxide nanoparticles on lead accumulation and toxicity in the experiment with their intragastric administration / А.А. Shumakova, E.N. Trushina, O.K. Mustafina, S.Kh. Soto, I.V. Gmoshinsky, S.A. Khotimchenko // Nutrition issues. 2014. No. 2. P. 57-63.
  45. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection / M. Nairz, U. Schleicher, A. Schroll, T. Sonnweber, I. Theurl, S. Ludwiczek, H. Talasz, G. Brandacher, P.L. Moser, M.U. Muckenthaler, F.C. Fang, C. Bogdan, G.J. Weiss // ExpMed. 2013. 210(5). P. 855-873. doi: 10.1084/jem.20121946.
  46. Iron regulates nitric oxide synthase activity by controlling nuclear transcription / G. Weiss, G.  Werner-Felmayer, E.R. Werner, K. Grünewald, H. Wachter, M.W. Hentze // J. Exp. Med. 1994. 180. P. 969-976. doi: 10.1084/jem.180.3.969.
  47. Dlaska M., Weiss G. Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression // J. Immunol. 1999. No. 162. P. 6171-6177.
  48. Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFN regulatory factor 1 expression / G. Fritsche, M. Dlaska, H. Barton, I. Theurl, K. Garimorth, G. Weiss / J. Immunol. 2003. 171. P. 1994-1998.
  49. Amino acids and immune function / P. Li, Y.L. Yin, D.F. Li, S.W. Kim, G. Wu // Br J Nutr. 2007. 98. P. 237-252. doi: 10.1017/S000711450769936X.
  50. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health / J.R. McKnight, M.C. Satterfield, W.S. Jobgen, S.B. Smith, T.E. Spencer, C.J. Meininger, C.J. McNeal, G. Wu // AminoAcids. 2010. 39(2). P. 349-357. doi: 10.1007/s00726-010-0598-z.
  51. Huang C.-C., Tsai S.-C., Lin W.-T. Potential ergogenic effects of L-arginine against oxidative and inflammatory stress induced by acute exercise in aging rats // ExpGerontol. 2008. 43(6). P. 571-577. doi: 10.1016/j.exger.2008.03.002.
  52. Protective effects of a combination of Quercetin and vitamin E against cyclosporine A-indu-ced oxidative stress and hepatotoxicity in rats / Z. Mostafavi-Pour, F. Zal, A. Monabati, M. Vessal // HepatolRes. 2008. 38(4). P. 385-392. doi: 10.1111/j.1872-034X.2007.00273.x.
    Sizova Elena Anatolievna, doctor of biological sciences, head of the center «Nanotechnology in agriculture» FSBSI «Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences» 460000, Russia,Orenburg, ul. 9 Yanvarya, 29, tel.: 8(3532)77-39-97; associateprofessorFSBEI HE «Orenburg State University», 460018, Russia, Orenburg, pr. Pobedy, 13, e-mail: Sizova.L78@yandex.ru

    Yausheva Elena Vladimirovna, candidate of biological sciences, center «Nanotechnology in agriculture» FSBSI «Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences» 460000, Russia,Orenburg, ul. 9 Yanvarya, 29

Download