Kalashnikov VV, Zaytsev AM, Atroshchenko MM, Miroshnikov SA, Zavyalov OA, Frolov AN.

DOI: 10.33284/2658-3135-102-2-46

UDC 636.1:577.17(470.6)

Acknowledgements:

Research was carried out supported by Russian Scientific Foundation (project No 17-16-01109)

Reference intervals of chemical elements in the horse's mane of the English thoroughbred

V V Kalashnikov1, A M Zaytsev1, M M Atroshchenko1, S A Miroshnikov2,3, O A Zavyalov2, A N Frolov2

1All-Russian Research Institute of Horse Breeding(Ryazan region, village of Divovo, Russia)

2 Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

3 Orenburg State University(Orenburg, Russia)

Summary. The purpose of this study was to assess the content of essential and toxic trace elements in the hair from the mane of stallions and mares of the English thoroughbred bred in the biogeochemical province of the North Caucasus. For this purpose, hair samples were taken from clinically healthy stallions (n​=190) and mares (n=94), 3-7 years old. Hair color is black.

The elemental composition of hair was determined according to 20 indicators using atomic emission and mass spectrometry (AES-ICP and MS-ICP). Statistical processing was performed using Mann-Whitney U-test. For data processing, the software package «Statistica 10.0» («Stat Soft Inc.», USA) was used.

Significant gender differences were identified in 10 essential elements: Co, Cr, Fe, I, Mn, Zn, Li, Ni, Si,V, and 6 toxic elements: Al, As, Pb, Sn, Sr, Hg, in that respect reference  intervals we calculated separately according to gender.

Reference intervals of the main essential and toxic elements in the hair from the horse's mane of the English thoroughbred ere calculated in accordance with the recommendations of the ASVCP Quality Assurance and Laboratory Standard Guidelines. Reference intervals (µg/g) were established for stallions according to Co (0.006-0.112), Cr (0.026-0.40), Cu (4.29-6.78), Fe (9.99-268.2) , I (0.02-3.87), Mn (0.48-9.35), Se (0.127-0.732), Zn (100.7-170.8), Li (0.01-0.31) ), Ni (0.054-0.464), Si (0.532-29.18), V (0.007-0.328), Al (2.23-136.0), As (0.006-0.099), Cd (0.002-0.03 ), B (0.464-18.9), Pb (0.016-0.5), Sn (0.0016-0.2), Sr (0.926-7.02), Hg (0.0018-0.016); mares according to Co (0.006-0.173), Cr (0.026-0.67), Cu (4.06-7.88), Fe (9.46-591.7), I (0.079-3.47), Mn (0.613-14.6), Se (0.077-0.71), Zn (93.95-166.7), Li (0.012-1.02), Ni (0.075-0.653), Si (1.59- 30.1), V (0.0052-0.823), Al (1.72-192.7), As (0.0066-0.181), Cd (0.002-0.054), B (0.512-5.96), Pb (0.023-0.436), Sn (0.0017-0.133), Sr (1.33-13.49), Hg (0.0018-0.02).

 Keywords: horses, English thoroughbred, mares, stallions, hair, trace elements, essential elements, toxic elements, reference intervals

References

  1. Skalny AV. Evaluation and correction of elemental status of the population as a perspective direction of national healthcare and environmental monitoring. Trace Elements in Medicine. 2018;19(1):5-13.
  2. AnkeM, KoślaT, GroppelB. Thecadmiumstatusofhorsesfromcentraleuropedependingonbreed, sex, ageandlivingarea. Archiv für Tierernahrung. 1989;39(7):657-683. doi:https://doi.org/10.1080/17450398909428337
  3. Asano K, Suzuki К, Chiba М, Sera К, Matsumoto Т, Asano R, Sakai T. Influence of the coat color on the trace elemental status measured by particle-induced X-ray emission in horse hair. Biological Trace Element Research. 2005; 103(2):169-176. doi:https://doi.org/10.1385/BTER:103:2:169
  4. Asano R, Suzuki К, Otsuka Т, Otsuka М, Sakurai H. Concentrations of toxic metals and essential minerals in the mane hair of healthy racing horses and their relation to age. Journal of Veterinary Medical Science. 2002;64(7):607-610. doi:https://doi.org/10.1292/jvms.64.607
  5. Assi MA, Hezmee MNM, Haron AW, Sabri MYM, Rajion MA. The detrimental effects of lead on human and animal health. Vet World. 2016;Jun.9(6): 660-671. Published online 2016 Jun 27. doi:https://doi.org/10.14202/vetworld.2016.660-671
  6. Cape L, Hintz HF. Influence of month, color, age, corticosteroids, and dietary molybdenum on mineral concentration of equine hair. American Journal of Veterinary Research. 1982;43:1132-1136.
  7. Chyla MA, Zyrnicki W. Determination of metal concentrations in animal hair by the ICP method. Comparison of various washing procedures. Biological Trace Element Research. 2000;75:187-194.
  8. Combs DK. Hair Analysis as an Indicator of Mineral Status of Livestock. Journal of Animal Science. 1987; 65(6):1753-1758. doi:https://doi.org/10.2527/jas1987.6561753x
  9. Cornelis R, Sabbioni E, Van der Venne MT. Trace element reference values in tissues from inhabitants of the European Community. VII. Review of trace elements in blood, serum and urine of the Belgian population and critical evaluation of their possible use as reference values. Science of the Total Environment. 1994;158(1-3):191-226. doi:https://doi.org/10.1016/0048-9697(94)90058-2
  10. Davis TZ, Stegelmeier BL, Hall JO. Analysis in horse hair as a means of evaluating selenium toxicoses and long-term exposures. Journal of Agricultural and Food Chemistry. 2014;62(30):7393-7397. doi:https://doi.org/10.1021/jf500861p
  11. Delesalle C, de Bruijn M, Wilmink S, Vandendriessche H, Mol G, Boshuizen B, Plancke L, Grinwis G. White muscle disease in foals: focus on selenium soil content. A case series.BMC Veterinary Research. 2017;13(1):121. doi:https://doi.org/10.1186/s12917-017-1040-5
  12. Dunnett M, Lees P. Trace element, toxin and drug elimination in hair with particular reference to the horse. Research in Veterinary Science. 2003;75:89-101.
  13. Emara EM, ImamН, Hassan МА, Elnaby SH. Biological application of laser induced breakdown spectroscopy technique for determination of trace elements in hair. Talanta. 2013;117:176-183. doi:https://doi.org/10.1016/j.talanta.2013.08.043
  14. Engelhard C. Inductively coupled plasma mass spectrometry: Recent trends and developments. Analytical and Bioanalytical Chemistry. 2011;399(1):213-219. doi:https://doi.org/10.1007/s00216-010-4299-y
  15. Friedrichs KR, Harr KE, Freeman KP, Szladovits B, Walton RM, Barnhart KF, Blanco-Chavez J. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Veterinary Clinical Pathology. 2012;41(4):441-453. doi:https://doi.org/10.1111/vcp.12006
  16. Gabryszuk М, Sloniewski К, Metera Е, Sakowski Т. Content of mineral elements in milk and hair of cows from organic farms. Journal of Elementology. 2010;15.:259-267. doi:https://doi.org/10.5601/jelem.2010.15.2.259-267
  17. Geffré A, Concordet D, Braun JP, Trumel C. Reference value advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Veterinary Clinical Pathology. 2011;40:107-112. doi:https://doi.org/10.1111/j.1939-165X.2011.00287.x
  18. González-Muñoz MJ, Peña A, Meseguer I. Monitoring heavy metal contents in food and hair in a sample of young Spanish subjects. Food and Chemical Toxicology. 2008;46(9):3048-3052. doi:https://doi.org/10.1016/j.fct.2008.06.004
  19. Gräsbeck R, Saris NE. Establishment and use of normal values. ScandJClin Lab Invest. 1969;2:62-63.
  20. Hamilton EI, Sabbioni E, Van der Venne MT. Element reference values in tissues from inhabitants of the European Community. VI. Review of elements in blood, plasma and urine and a critical evaluation of reference values for the United Kingdom population. Science of The Total Environment. 1994;158(1-3):165-190. doi:https://doi.org/10.1016/0048-9697(94)90057-4
  21. Henny J, Petitclerc С, Fuentes-Arderiu Х, Hyltoft Petersen Р, Queraltó JM, Schiele F, Siest G. Need for revisiting the concept of reference values. Clinical Chemistry and Laboratory Medicine. 2000;38(7):589-595. doi:https://doi.org/10.1515/CCLM.2000.085
  22. Hillyer LL, Ridd Z, Fenwick S, Hincks P, Paine SW. Pharmacokinetics of inorganic cobalt and a vitamin B12 supplement in the Thoroughbred horse: Differentiating cobalt abuse from supplementation. Equine Veterinary Journal. 2018;50(3):343-349. doi:https://doi.org/10.1111/evj.12774
  23. Horn PS, Pesce AJ. Reference intervals: a user’s guide. Washington, DC: American Association for Clinical Chemistry;2005:115 p.
  24. Iyengar GV. Elemental analysis of biological systems, biological, medical, environmental, compositional and methodological aspects. Boca Raton: CRC Press;1989;430 p.
  25. Jarvis SC, Austin AR. Soil and plant factor limiting the availability of copper to beef suckler herd. The Journal of Agricultural Science. 1983;101(1):39-46. doi:https://doi.org/10.1017/S0021859600036340
  26. Kalashnikov V, Zajcev A, Atroshchenko M, Miroshnikov S, Frolov A, Zav'yalov O, Kalinkova L, Kalashnikova T. The content of essential and toxic elements in the hair of the mane of the trotter horses depending on their speed. Environmental Science and Pollution Research. 2018;25(22):21961-21967. doi:https://doi.org/10.1007/s11356-018-2334-2
  27. Kucera J, Bencko V, Sabbioni E, Van der Venne MT. Review of trace elements in blood, serum and urine for the Czech and Slovak populations and critical evaluation of their possible use as reference values. The Science of the total environment. 1995;166:211-234.
  28. Leung PL, Huang HM, Sun DZ, Zhu MG. Hair concentrations of calcium, iron, and zinc in pregnant women and effects of supplementation. Biological trace element research. 1999;69(3):269-282. doi:https://doi.org/10.1007/BF02783879
  29. Levine RJ, Moore RM, Maclaren GD, Barthel WF, Landrigan PJ. Occupational lead poisoning, animal deaths, and environmental contamination at a scrap smelter. American Journal of Public Health. 1976;66:548-552.
  30. Madejón P, Domínguez MT, Murillo JM. Evaluation of pastures for horses grazing on soils polluted by trace elements. Ecotoxicology. 2009;May 18(4):417-428. doi: 10.1007/s10646-009-0296-3
  31. Madejón P, Domínguez MT, Murillo JM. Pasture composition in a trace element-contaminated area: the particular case of Fe and Cd for grazing horses. Environmental Monitoring and Assessment. 2012;184(4):2031-2043. doi: 10.1007/s10661-011-2097-4
  32. Mihajlovic M. Selenium toxicity in domestic animals. Glas, Srpska Akademija Nauka i Umetnosti. Odeljenje Medicinskih Nauka. 1992;42:131-144.
  33. National Research Council. Nutrient Requirements of Horses: Sixth Revised Edition. Washington. DC: The National Academies Press, 2007. 324 p. doi: https://doi.org/10.17226/11653
  34. Neustädter LT Kamphues J, Ratert CJ. Influences of different dietary contents of macrominerals on the availability of trace elements in horses. J Anim Physiol Anim Nutr (Berl). 2018;102(2):633-640. doi:https://doi.org/10.1111/jpn.12805. Epub 2017 Oct 13.
  35. Poulsen OM, Christensen JM, Sabbioni E, Van der Venne MT. Trace element reference values in tissues from inhabitants of the European Community. V. Review of trace elements in blood, serum and urine and critical evaluation of reference values for the Danish population. Science of The Total Environment. 1994;141(1-3):197-215. doi:https://doi.org/10.1016/0048-9697(94)90028-0
  36. Rodushkin I, Engström E, Baxter DC. Review Isotopic analyses by ICP-MS in clinical samples. Analytical and Bioanalytical Chemistry. 2013;405(9):2785-2797. doi:https://doi.org/10.1007/s00216-012-6457-x
  37. Roug А, Swift PK, Gerstenberg G, Woods LW, Kreuder-Johnson C, Torres SG, Puschner B. Comparison of trace mineral concentrations in tail hair, body hair, blood, and liver of mule deer (Odocoileus hemionus) in California. Journal of Veterinary Diagnostic Investigation. 2015;27(3):295-305. doi:https://doi.org/10.1177/1040638715577826
  38. Shao S, Zheng B. The biogeochemistry of selenium in Sunan grassland, Gansu, Northwest China, casts doubt on the belief that Marco Polo reported selenosis for the first time in history. Environ Geochem Health. 2008;30(4):307-314. doi:https://doi.org/10.1007/s10653-008-9166-9
  39. Siest G, Henny J, Grasbeck R, Wilding P, Petitclerc C, Queralto JM, Petersen PH. The theory of reference values: an unfinished symphony. Clinical Chemistry and Laboratory Medicine. 2013;51:47-64. https://doi.org 10.1515/cclm-2012-0682
  40. Sippel WL, Flowers J, OFarrell J, Thomas W, Powers J. Nutrition consultation in horses by aid of feed, blood and hair analysis. Proceedings of the American Association of Equine Practitioners 1964;10:139-152.
  41. Smith KM, Dagleish MP, Abrahams PW. The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: II. Metal concentrations in blood and wool. Science of the Total Environment. 2010;408(5):1035-1042. doi:https://doi.org/10.1016/j.scitotenv.2009.10.023
  42. Topczewska J. Effects of seasons on the concentration of selected trace elements in horse hair. Journal of Central European Agriculture. 2012;13(14): 671-680. doi:https://doi.org/10.5513/JCEA01/13.4.1110
  43. Ward NI, Savage JM. Elemental status of grazing animals located adjacent to the London Orbital (M25) motorway. The Science of the Total Environment 1994;146:185-189.
  44. Wells LA, Leroy R, Ralston SL. Mineral intake and hair analysis of horses in Arizona. Journal of Equine Veterinary Science. 1990;10:412-416.
  45. White MA, Sabbioni E. Trace element reference values in tissues from inhabitants of the European Union. X. A study of 13 elements in blood and urine of a United Kingdom population. The Science of The Total Environment. 1998;216(3):253-270. doi:https://doi.org/10.1016/S0048-9697(98)00156-9
  46. Wichert B, Frank T, Kienzle E. Zinc, copper and selenium status of horses in Bavaria. Journal of Nutrition. 2002;132:1776-1777.
  47. Witte ST, Will LA, Olsen CR, Kinker JA, Miller-Graber Р. Chronic selenosis in horses fed locally produced alfalfa hay. Journal of the American Veterinary Medicine Association. 1993;202:406-409.
  48. Wysocki AA, Klett R. Hair as an indicator of the calcium and phosphorus status of ponies. Journal of Animal Science. 1971;32:74-78.
  49. Yanai T, Masegi T, Ishikawa K, Sakai H, Iwasaki T, Moritomo Y, Goto N. Spontaneous vascular mineralization in the brain of horses. JournalofVeterinaryMedicalScience. 1996;Jan.58(1): 35-40.

    Kalashnikov Valery Vasilyevich, Dr. Sci (Agr), Academician of Russian Academy of Sciences, Scientific Director, All-Russian Research Institute of Horse Breeding, 391105, Russia,Ryazanregion, Rybnovskydistrict, villageDivovo, tel.: 8(4912)24-02-65, e-mail: vniik08@mail.ru

    Zaytsev Alexander Mikhaylovich, Cand. Sci (Agr.), Director, All-Russian Research Institute of Horse Breeding, 391105, Russia,Ryazanregion, Rybnovskydistrict, villageDivovo, tel.: 8(4912)24-02-65,  tel.: 8(4912)24-02-65, e-mail: amzaitceff@mail.ru

    Atroshchenko Mikhail Mikhaylovich, Cand. Sci (Agr.), Senior Researcher, Laboratory of Physiology of Reproduction,All-Russian Research Institute of Horse Breeding, 391105, Russia,Ryazanregion, Rybnovskydistrict, villageDivovo, tel.: 8(4912)24-02-65, e-mail: atromiks-77@mail.ru

    Miroshnikov Sergey Aleksandrovich, Dr. Sci(Biol.), Corresponding Member, Russian Academy Of Sciences, Director, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences,460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8(3532)43-46-41, e-mail: vniims.or@mail.ru; Professor, Department of Animal Biotechnology and Aquaculture, Orenburg State University, 460018, Orenburg, Russia, 13 Pobedy Avenue

    Zavyalov Oleg Aleksandrovich, Cand. Sci(Agr.), Senior Researcher, Department for Beef Cattle Technology and Beef Production, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences», 460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8(3532)43-46-78, e-mail: oleg-zavyalov83@mail.ru

    Frolov Alexey Nikolaevich, Cand. Sci(Agr.), Senior Researcher, Department for Beef Cattle Technology and Beef Production, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8(3532)43-46-78, e-mail: forleh@mail.ru

Received: 5 June 2019; Accepted: 17 June 2019; Published: 28 June 2019

Download