Korotkova AM, Lebedev SV, Kvan OV, Atlanderova KN.

DOI: 10.33284/2658-3135-102-2-7

UDC 577.17:633.11

Evaluation of ultrafine particles influence on biometric parameters of wheat germs

AM Korotkova1,2, SV Lebedev1,2, OV Kvan1,2, KN Atlanderova1

1Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

2 Orenburg State University (Orenburg, Russia)

Summary. The article presents studies on the effect of ultrafine nickel and copper particles on soft wheat (Triticum vulgare). After ultrafine particles (UFP) were introduced, copper UFP had the most pronounced effect on germination of Triticum v., there was a sharp inhibition of seed germination, until complete suppression (concentration of 0.5 and 1 M). Introduction of nickel UFP (concentration from 0.1 to 1 M) suppressed the germination of wheat 16.7 times in comparison with the control, respectively (P≤0.05). Also, nickel reduced the number of side roots to 3.4±1.02 pcs., while the introduction of copper increased the formation of lateral roots to 6.8±0.17 pcs.

Fluorimetric measurement of DCFN-DA showed a significant (P≤0.05) increase in the total concentration of reactive oxygen species in roots up to 35.8 % compared with the negative control after exposure of copper UFP.

The content of prooxidants in wheat germs had a species-specific sensitivity to changes in the content of ultrafine particles of copper and nickel. Nickel UFP has contributed to the stimulation of O2 production, and copper UFP have a common ROS value, including H2O2 and NO.

Key words: soft wheat, ultrafine particles, nickel, copper, seed germination.

References

  1. PotapovAI, RakitskiyVN, TulakinAV, LutsenkoLA, Il'nitskayaAV, EgorovaAM, GvozdevaLL.Safety of nanoparticles and nanomaterials for environmental and occupational space. Hygiene and sanitation. 2013;92(3):8-14.
  2. Korotkovа AM, Lebedev SV, Rusakovа EA. DNA-damaging effects of nanoparticles Ni˚ and NiO for example a plant species Triticum vulgare. VESTNIK Orenburg State University. 2015;10(185):24-26.
  3. Aazam ES,El-Said WA. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities. Bioorganic Chemistry. 2014;57:5-12. doi: https://doi.org/10.1016/j.bioorg.2014.07.004
  4. Alarifi S, Ali D, Alkahtani S. Oxidative stress-induced DNA damage by manganese dioxide nanoparticles in human neuronal cells.BioMed Research International. 2017;2017:5478790:10 p. doi: https://doi.org/10.1155/2017/5478790
  5. Ali S, Rizwan M, Hussain A, Zia Ur Rehman M, Ali B, Yousaf B, Wijaya L, Alyemeni MN, Ahmad P. Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiology and Biochemistry. 2019;140:1-8.doi: https://doi.org/10.1016/j.plaphy.2019.04.041
  6. Alinejad-Mofrad E, Malaekeh-Nikouei B, Gholami L, Mousavi SH, Sadeghnia HR, Mohajeri M, Darroudi M, Oskuee RK. Evaluation and comparison of cytotoxicity, genotoxicity, and apoptotic effects of poly-l-lysine/plasmid DNA micro- and nanoparticles. Human & Experimental Toxicology. 2019. doi: https://doi.org/10.1177/0960327119846924
  7. AlQuraidi AO, Mosa KA, Ramamoorthy K. Phytotoxic and genotoxic effects of copper nanoparticles in coriander (Coriandrum sativum-Apiaceae). Plants. 2019;8(1):19: 12 p. doi: https://doi.org/10.3390/plants8010019
  8. Bielach A, Hrtyan M, Tognetti VB. Plants under Stress: Involvement of Auxin and Cytokinin. International Journal of Molecular Sciences. 2017;18(7): 1427:29 p. doi: https://doi.org/10.3390/ijms18071427
  9. Carmona ER, García-Rodríguez A, Мarcos R.Genotoxicity of copper and nickel nanoparticles in somatic cells of Drosophila melanogaster. Journal of Toxicology. 2018;2018:7278036:8 p. doi: https://doi.org/10.1155/2018/7278036
  10. Costa da MVJ, Sharma PK. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54(1):110-119. doi: https://doi.org/10.1007/s11099-015-0167-5
  11. Feng J, Lin Y, Yang Y, Shen Q, Huang J, Wang S, Zhu X, Li Z. Tolerance and bioaccumulation of combined copper, zinc, and cadmium in Sesuvium portulacastrum. Marine pollution bulletin. 2018;131(Part A):416-421. doi: https://doi.org/10.1016/j.marpolbul.2018.04.049
  12. Guigues S, Bravin MN, Garnier C, Doelsch E. Does specific parameterization of WHAM improve the prediction of copper competitive binding and toxicity on plant roots? Chemosphere. 2017;170:225-232. doi: https://doi.org/10.1016/j.chemosphere.2016.12.017
  13. Handa T, Hirai T, Izumi N, Shun-ichi E, Shin-ichi T, Nagano K, Higashisaka K, Yoshioka Y, Tsutsumi Y. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice. Nanotechnology. 2017;28(13):135101. doi: http://dx.doi.org/10.1088/1361-6528/aa5d7c
  14. Kärkönen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry. 2015;112:22-32.doi: https://doi.org/10.1016/j.phytochem.2014.09.016
  15. Karlsson HL, Gliga AR, Calléja F MGR, Gonçalves C SAG, Wallinder IO, Vrieling H, Fadeel B, Hendriks G. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Particle and Fibre Toxicology. 2014;11:41:14 p.doi: https://doi.org/10.1186/s12989-014-0041-9
  16. Kibriya G, Bagdi AK, Hajra A. Visible light induced tetramethylethylenediamine assisted formylation of imidazopyridines. Organic and Bimolecular Chemistry. 2018;16(18):3473-3478. doi: http://dx.doi.org/10.1039/c8ob00532j
  17. Lei C, Sun Y, Tsang DCW, Lin D. Environmental transformations and ecological effects of iron-based nanoparticles. Environmental Pollution. 2018;232:10-30. doi: https://doi.org/10.1016/j.envpol.2017.09.052
  18. Liu CG, Sun C, Jiang MX, Zhang LL, Sun MJ. Calculations of NO reduction with CO over a Cu1/PMA single-atom catalyst: a study of surface oxygen species, active sites, and the reaction mechanism. Physical Chemistry Chemical Physics. 2019;21(19):9975-9986. doi: https://doi.org/10.1039/C9CP01092K
  19. Manna I, Bandyopadhyay M. Engineered nickel oxide nanoparticle causes substantial physicochemical perturbation in plants. Frontiers in Chemistry. 2017;5:Article 92:16 p. doi: https://doi.org/10.3389/fchem.2017.00092
  20. Milewska-Hendel A, Zubko M, Stróż D, Kurczyńska EU. Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. International Journal of Molecular Sciences. 2019;20(7):1650:22 p. doi: https://doi.org/10.3390/ijms20071650
  21. Mushinskiy AA, Aminovа EV, Korotkova AM. Evaluation of tolerance of tubers Solanum tuberosum to silicа nanoparticles. Environmental Science and Pollution Research. 2018;25(34):34559-34569.doi: https://doi.org/10.1007/s11356-018-3268-4
  22. Nair PMG, Chung IM. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. Int. 2014;21(22):12709-12722. doi: https://doi.org/10.1007/s11356-014-3210-3
  23. Oukarroum A, Barhoumi L, Samadani M, Dewez D. Toxic effects of Nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L. Hindawi Publishing Corporation BioMed Research International. 2015;2015:Article ID 501326:7 р. doi: http://dx.doi.org/10.1155/2015/501326
  24. Park EJ, Jeong U, Yoon C, Kim Y. Comparison of distribution and toxicity of different types of zinc-based nanoparticles. Environ Toxicol. 2017;32(4):1363-1374. doi: https://doi.org/10.1002/tox.22330
  25. Pramanik S, Pal S, Bysakh S, De G. CuxNi1−xalloy nanoparticles embedded SiO2 films: synthesis and structure. Journal of Nanoparticles Research. 2011;13(1):321-329.doi: https://doi.org/10.1007/s11051-010-0033-0
  26. Rizwan M, Ali S., Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-Ur-Rehman M, Farid M, Abbas F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J Hazard Mater. 2017;322(Part A);2-16. doi: https://doi.org/10.1016/j.jhazmat.2016.05.061
  27. Schubert J, Radeke C, Fery A, Chanana M. The role of pH, metal ions and their hydroxides in charge reversal of protein-coated nanoparticles. Physical Chemistry Chemical Physics. 2019:21:11011-11018. doi: https://doi.org/10.1039/C8CP05946B
  28. Sekine R, Marzouk ER, Khaksar M, Scheckel KG, Stegemeier JP, Lowry GV, Donner E, Lombi E. Aging of dissolved copper and copper-based nanoparticles in five different soils: Short-term Kinetics vs. Long-term Fate. Journal of Environmental Quality. 2017;46(6):1198-1205. doi: 10.2134/jeq2016.12.0485
  29. Singh D, Kumar A. Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicology. 2018;27(1):23-31. doi: https://doi.org/10.1007/s10646-017-1867-3
  30. Sirota TV. Standardization and regulation of the rate of the superoxide-generating reaction of adrenaline autoxidation used for evaluation of pro/antioxidant properties of various materials. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2017;11(2):128-133. doi: https://doi.org/10.1134/S1990750817020068
  31. Spielman-Sun E, Lombi E, Donner E, Avellan A, Etschmann B, Howard D, Lowry GV. Temporal evolution of copper distribution and speciation in roots of Triticum aestivum exposed to CuO, Cu(OH)2, and CuS nanoparticles. Environ Sci Technol. 2018;52(17):9777-9784. doi: https://doi.org/10.1021/acs.est.8b02111
  32. Su Y, Wu D, Xia H, Zhang C, Shi J, Wilkinson KJ, Xie B. Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress. Environmantal International. 2019;128;407-416. doi: https://doi.org/10.1016/j.envint.2019.05.007
  33. Tang Y, Xin H, Yang S, Guo M, Malkoske T, Yin D, Xia S. Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback. Aquatic Toxicology. 2018;204:19-26. doi: https://doi.org/10.1016/j.aquatox.2018.08.010
  34. Theriault G, Nkongolo K. Nickel and Copper Toxicity and Plant Response Mechanisms in White Birch (Betula papyrifera). Bull Environ Contam Toxicol. 2016;97(2):171-176. doi: https://doi.org/10.1007/s00128-016-1842-3
  35. Tripathi DK., Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry. 2017;110:2-12. doi: https://doi.org/10.1016/j.plaphy.2016.07.030
  36. Wada S, Cui S, Yoshida S. Reactive Oxygen Species (ROS) Generation Is Indispensable for Haustorium Formation of the Root Parasitic Plant Striga hermonthica. Frontiers in Plant Science. 2019;10:328: 12 p. doi: https://doi.org/10.3389/fpls.2019.00328
  37. Watson JL, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals. 2015;28(1):101-112. doi: https://doi.org/10.1007/s10534-014-9806-8
  38. Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, TuŚnio K, Słomski R, Zaleska-Medynska A, Jurga S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. Journal of Materials Science: Materials in Medicine. 2017;28:92:11 p. doi: https://doi.org/10.1007/s10856-017-5902-y
  39. Wright M, Adams J, Yang K, McManus P, Jacobson A, Gade A, McLean J, Britt D, Anderson A. A root-colonizing pseudomonad lessens stress responses in wheat imposed by CuO nanoparticles. PLoS One. 2016;11(10):19 p. doi: https://doi.org/10.1371/journal.pone.0164635
  40. Yang J, Shi S, Gong W, Du L, Sun J, Song S. The characterization of plant species using first-derivative fluorescence spectra. Luminescence. 2017;32(3):348-352. doi: https://doi.org/10.1002/bio.3185

    Korotkova Anastasia Mikhailovna, Cand. Sci.(Biol.), Researcher of the Laboratory for Biological Testing and Expertise, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St.; Researcher of Institute of Bioelementology, Orenburg State University, 13, Pobedy Avenue, 460018, Orenburg, Russia, e-mail: anastasiaporv@mail.ru

    Lebedev Svyatoslav Valeryevich, Dr. Sci(Biol.), Leading Researcher of the Laboratory for Biological Testing and ExpertiseFederal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg,Russia, 29, 9 Januarya St.;Professor, Department of Animal Raw Materials and Aquaculture Technology, Orenburg State University, 13, Pobedy Avenue, 460018, Orenburg,Russia,tel.: 8-912-345-87-38, e-mail: lsv74@list.ru

    Kvan Olga Vilorievna, Cand. Sci. (Biol.), Researcher of the Laboratory for Biological Testing and Expertise, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St.;Researcherof the Experimental Biological Clinic,Orenburg State University, 13 Pobedy Avenue, 460018, Orenburg, Russia,tel.: 8-912-345-87-38, e-mail: kwan111@yandex.ru

    Atlanderova Kseniya Nikolayevna,Post-Graduate Students, SpecialistTesting Center,Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia,29, 9 Januarya St., tel.: 8(3532)77-39-97, e-mail: icvniims@mаil.ru

Received: 7 June 2019; Accepted: 17 June 2019; Published: 28 June 2019

Download