A M Makaeva, K N Atlanderova, E A Sizova, S A Miroshnikov, V V Vanshin
Research was carried out according the plan of reasearch scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0761-2019-0005)
DOI: 10.33284/2658-3135-102-3-19
UDC 636.085:577.17
The elemental and microecological composition of rumen after use of highly dispersive particles
in cattle feeding
A M Makaeva1, K N Atlanderova1, E A Sizova1,2, S A Miroshnikov1,2, V V Vanshin2
1Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)
2Orenburg State University (Orenburg, Russia)
Summary. The article presents the results of studies of elemental and microecological composition of the rumen of young cattle after use of finely dispersed particles of silicon dioxide (SiO2) and an alloy of iron and cobalt (FeCo) with a hydrodynamic radius of 109.6±16.6 and 265±25 nm, respectively. In «in vitro» experiment, it was shown that the digestibility of dry matter of feed when exposed in ruminal fluid is maximal after introduction of finely dispersed particles (FDP) of SiO2 at a concentration of 2 mg/ml. The introduction of SiO2 FDP promotes progressive silicon accumulation in ruminal fluid with dynamics from 3.8% three to 31% six hours after administration. The use of FeCo FDP in feeding is accompanied by a decrease in the concentration of iron in ruminal fluid by 46% and 52%, cobalt – by 40% and 50% after three and six hours, respectively.
The introduction of SiO2 FDP into food is associated with changes in the microecological status and enzymatic activity of ruminal fluid and contributes to an increase in the digestibility of dry matter.
The absence of toxic effects of FDP with respect to ruminalmicroflora, the positive effect of the studied fine particles on main bacterial groups of the rumen microbiome, and the absence of the development of conditionally pathogenic microflora show their relative biosafety for the environment and prospects for use in animal husbandry practice.
Key words: cattle, mineral nutrition, elemental status, microflora, ruminal fluid, finely dispersed particles, silicon dioxide (SiO2), alloy of iron and cobalt.
References
- Yausheva EV, Miroshnikov SА, Sizova EА, Vasilchenko AS. The study of the biological activity of metal nanoparticles. Questions of biological, medical and pharmaceutical chemistry. 2013;9:054-059.
- MiroshnikovSА,SizovaEA. Nanomaterialsinanimalhusbandry (review). HeraldofBeefCattleBreeding. 2017;3(99):7-22.
- KalashnikovAP,etal.Standardsanddietsoffarmanimals: Ref. book. 3rded., rework. andadd. Moscow: Agropromizdat; 2003: 456 p.
- Oberlis D, Harland B, Skal'nyj A. Biologicheskajarol' makro- imikrojelementov u chelovekaizhivotnyh. pod red. Skal'nogoAV.SPb.:Nauka; 2008. 544p.
- Sizova EA. Comparative analysis of the different-sized copper and iron nanoparticles biological effects. VestnikoftheRussianAgriculturalScience. 2017;3:13-17.
- Sizova EA, Yausheva EV.Comparative productivity of broiler chickens injected with variously sized ultrafine iron particles. AnimalHusbandryandFodderProduction. 2019;102(1):6-21.doi: 10.33284/2658-3135-102-1-6
- AmannRI, LinC, KeyR, MontgomeryL, StahlDA. Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol. 1992;15(1):23-31. doi:https://doi.org/10.1016/S0723-2020(11)80133-5
- Arelovich HM, Owens FN, Horn GW, Vizcarra JA. Effects of supplemental zinc and manganese on ruminal fermentation, forage intake, and digestion by cattle fed prairie hay and urea. Journal of Animal Science. 2000;78(11):2972-2979. doi: https://doi.org/10.2527/2000.78112972x
- Aslam MF, Frazer DM, Faria N, Bruggraber SFA, Wilkins SJ, Mirciov C, Powell JJ, Anderson GJ, Pereira DI. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. FASEB J. 2014;28(8):3671-3678. doi: https://doi.org/10.1096/fj.14-251520
- Brunner TJ, Wick P, Manser P, et al. In vitro cytotoxicity of oxide nanoparticles: сomparison to asbestos, silica, and the effect of particle solubility. Environmental Science and Technology. 2006;40(14):4374-4381.doi:https://doi.org/10.1021/es052069i
- Bryant MP. Bacterial species of the rumen. Bacteriol. Rev. 1959;23(3):125-153.
- Dehority BA, Orpin CG. Development of, and natural fluctuations in, rumen microbial population. The Rumen Microbial Ecosystem. Hobson PN, Stewart CS, editors. London: Blackie Academic and Professional; 1997:196-245. doi:https://doi.org/10.1007/978-94-009-1453-7_5
- Faulkner MJ, Weiss WP. Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 1. Production and macronutrient digestibility. J Dairy Sci. 2017;100(7):5358-5367. doi: https://doi.org/10.3168/jds.2016-12095
- Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim Feed Sci Technol. 2009;150(3-4):259-269. doi: https://doi.org/10.1016/j.anifeedsci.2008.09.003
- Grna A, Koo PH, Hogan J. Antitumor effect of novel silatranes on renal cell carcinoma in mice. Anticancer Res. 1992;12(2):565-569.
- Hart EH, Creevey CJ, Hitch T, Kingston-Smith AH. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci Rep. 2018;8(1):10504. doi: https://doi.org/10.1038/s41598-018-28827-7
- Hespell RB, Akin DE, Dehority BA. Bacteria, fungi, and protozoa of the rumen. Gastrointestinal Microbiology. Mackie RI, White BA, Isaacson RE, editors. New York: Chapman and Hall; 1997;2:59-141.
- Huws SA, Creevey CJ., Oyama LB, Mizrahi I, Denman SE, et. al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol. 2018;25(9):2161. doi: https://doi.org/10.3389/fmicb.2018.02161
- Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 2003;27(5):663-693. doi: https://doi.org/10.1016/S0168-6445(03)00072-X
- Miroshnikova E, Arinzhanov A, Kilyakova Y, Sizova E, Miroshnikov S. Antagonist metal alloy nanoparticles of iron and cobalt: impact on trace element metabolism in carp and chicken. Human & Veterinary Medicine. 2015;7(4):253-259.
- Pietroiusti A, Magrini A, Campagnolo L. New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol Appl Pharmacol. 2016;299:90-95. doi: https://doi.org/10.1016/j.taap.2015.12.017
- Pino F, Heinrichs AJ. Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers. J Dairy Sci. 2016;99(4). P. 2797-2810.doi: https://doi.org/10.3168/jds.2015-10034
- Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. 2017;8:1014. doi: https://doi.org/10.3389/fmicb.2017.01014
- Sekhon BS. Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl. 2014;7:31-53. doi: https://doi.org/10.2147/NSA.S39406
- Shamsi A, Ahmed A, Bano B. Structural transition of kidney cystatin induced by silicon dioxide nanoparticles: an implication for renal diseases. J Biol Macromol. 2017;94(Part B):754-761. doi: https://doi.org/10.1016/j.ijbiomac.2016.10.019
- Shcherbakov AB, Ivanov VK, Zholobak NM, et al. Nanocrystalline ceria based materials – perspectives for biomedical application. Biophysics. 2011;56(6):987-1004. doi: https://doi.org/10.1134/S0006350911060170
- Sizova Е, Miroshnikov S, Yausheva E, Polyakova V. Assessment of morphological and functional changes in organs of rats after intramuscular introduction of iron nanoparticles and their agglomerates. Biomed Res Int. 2015;2015:243173. 7p. doi: http://dx.doi.org/10.1155/2015/243173
- Vázquez-Armijo JF, Martínez-Tinajero JJ, López D, Salem AFZM, Rojo R. In vitro gas production and dry matter degradability of diets consumed by goats with or without copper and zinc supplementation. Biological Trace Element Research. 2011;144(1-3):580-587. doi: https://doi.org/10.1007/s12011-011-9113-y
- Veira DM. The role of ciliate protozoa in nutrition of the ruminant. Journal of Animal Science. 1986;63(5):1547-1560. doi: https://doi.org/10.2527/jas1986.6351547x
- Wang С, Wang MQ, Ye SS, Tao WJ, Du YJ. Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult Sci. 2011;90(10): 2223-2228. doi: https://doi.org/10.3382/ps.2011-01511
- Wilkinson TJ, Cowan AA, Vallin HE, Onime LA, Oyama LB, Cameron SJ, et al. Characterization of the microbiome along the gastrointestinal tract of growing turkeys. Front. Microbiol. 2017;8:1089. 11 p. doi: https://doi.org/10.3389/fmicb.2017.01089
- WIlliams K, Milner J, Boudreau MD, Gokulan K, Cerniglia CE, Khare S. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicol. 2015;9(3):279-289. doi: https://doi.org/10.3109/17435390.2014.921346
- Wintzingerode FV, Göbel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 1997;21(3):213-229. doi: https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
- YaushevaЕ, Miroshnikov S, SizovaЕ. Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts. Environmental Science and Pollution Research. 2018;25(18):18109-18120. doi: https://doi.org/10.1007/s11356-018-1991-5
- Yegani M, Korver DR. Factors affecting intestinal health in poultry. Poult Sci. 2008;87(10):2052-2063. doi: https://doi.org/10.3382/ps.2008-00091
- Zelenák I, Jalc D, Plachá I, Sviatko P, Vendrák T, Siroka P, Gyulai F. The effect of copper and cobalt supplementation on the digestibility of fibrous feed in sheep. Vet Med (Praha). 1992;37(4):221-229.
- Zhang J, Shi H, Wang Y, Li S, Cao Z, Ji S, He Y, Zhang H. Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in holstein heifers. Front Microbiol. 2017;8:2206. 18 p. doi: https://doi.org/10.3389/fmicb.2017.02206
- Zoetendal EG, Akkermans AL, De Vos WM. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 1998;64(10):3854-3859.
Makaeva Aina Maratovna, Junior Researcher, Center «Nanotechnology in agriculture» Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8-919-842-46-99, e-mail: ayna.makaeva@mail.ru
Atlanderova Kseniya Nikolayevna, Junior Researcher, Specialist Testing Center CCU, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St., e-mail: atlander-kn@mail.ru
Sizova Elena Anatolievna, Dr. Sci (Biol.), Head Of The Center «Nanotechnology in agriculture» Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8(3532)77-39-97; Associate Professor, Department of Biology and Soil Science, Orenburg State University, 460018, Orenburg, Russia, 13 Pobedy Avenue, e-mail: Sizova.L78@yandex.ru
Miroshnikov Sergey Aleksandrovich, Dr. Sci (Biol.), Corresponding Member, Russian Academy Of Sciences, Director, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8(3532)43-46-41, e-mail: vniims.or@mail.ru; Professor, Executive Director Institute of Bioelementology, Orenburg State University, 460018, Orenburg, Russia, 13 Pobedy Avenue
Vanshin Vladimir Valeryevich, Cand. Sci (Agr.), Associate Professor, Department Technology of Food Production, Orenburg State University, 13 Pobedy Avenue, 460018, Orenburg, Russia, e-mail: post@mail.osu.ru
Received: 2 September 2019; Accepted: 16 September 2019; Published: 30 September 2019