A V Kharlamov, A N Frolov, O A Zavyalov, E A Tyapugin


Research was carried out according the plan of reasearch scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0761-2019-0006)

 DOI: 10.33284/2658-3135-102-3-46

 UDC 636.082:591.11

The effect of gene polymorphism of growth differentiation factor 5

on morphological and biochemical parameters of blood

A V Kharlamov, A N Frolov, O A Zavyalov, E A Tyapugin

Federal Research Center for Biological System and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

 Summary. Studies were conducted on calves of the Kalmyk breed (n=182), age 12-14 months, body weight 343.7±6.4 kg. Blood samples were taken to identify one nucleotide polymorphism of growth differentiation factor 5 (T586C in exon 1).

DNA samples were isolated from whole blood using the «DIAtomtmDNAPrep 200» reagent kit (IsoGeneLab, Moscow). For the polymerase chain reaction, the GenePaktmPCRCore kit («IsoGeneLab», Moscow) and the EncycloPCRkit kit («Evrogen», Moscow) were used. Primers are synthesized in NPF «Litekh» (Russia).

The  incidence of TT alleles in sample was established, it amounted to 48.9%, ТС– 46.7 and СС– 4.4%, χ2 test – 4.94.

At the second stage of research, in order to study the effect of polymorphism in GDF5 gene on morphological and biochemical parameters of blood, 8 animals were selected from each identified group of animals.

Morphological parameters were determined using an automatic hematological analyzer model URIT-2900 Vet Plus, a biochemical blood test was performed using an automatic biochemical analyzer CS-T240. 35 blood counts were studied.

It was found that blood of bulls with CC genotype contained 5.2% more crude protein, cholesterol – 15.5%, transferases: ALT – 6.9% and ɣ-GT – 20.2%, at a lower percentage monocytes (MID) – by 5.6 % and the average platelet volume (MPV) – by 9.2% compared with the TT genotype.

It was concluded that the effect of polymorphism on growth gene for differentiation factor 5 on 6 blood indices. The further research need with increase of animal group with homozygous genotype C in this gene.

Key words: cattle, bulls, gene, GDF5, SNP, blood.


  1. Bashirov VD, Frolov AN, Erzikov VI. Hematological blood parameters of gobies, depending on the period of their weaning from mothers in beef cattle breeding. Herald of Beef Cattle Breeding. 2008;61(II):243-244.
  2. Fatkullin RR. Morphological and biochemical blood parameters of experimental animals using the biologically active additive Vitartil. Agrarian Bulletin of the Urals. 2008;6(48):56-59.
  3. Adoligbe C, Zan L, Farougou S, Wang H, Ujjan JA. Bovine GDF10 gene polymorphism analysis and its association with body measurement traits in Chinese indigenous cattle. Mol Biol Rep. 2012;39(4):4067-4075. doi: ttps://doi.org/10.1007/s11033-011-1188-1
  4. Bani Ismail ZA, Al-Majali AM, Amireh F, Al-Rawashreh OF. Metabolic profile in goat does in late pregnancy with and without subclinical pregnancy toxemia. Vet Clin Pathol. 2008;37(4):434-437. doi: https://doi.org/10.1111/j.1939-165X.2008.00076.x
  5. Capellini TD, Chen H, Cao J, Doxey AC, Kiapour AM, Schoor M, Kingsley DM. Ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk. Nat Genetics. 2017;49(8):1202-1210. doi: 10.1038/ng.3911
  6. Chen H, Capellini TD, Schoor M, Mortlock DP, Reddi AH, Kingsley DM. Heads, shoulders, elbows, knees, and toes: modular Gdf5 enhancers control different joints in the vertebrate skeleton. PLoS Genetics. 2016;12(11):e1006454. https://doi.org/10.1371/journal.pgen.1006454
  7. Chhabra A, Tsou D, Clark RT, Gaschen V, Hunziker EB, Mikic B. Gdf-5 deficiency in mice delays Achilles tendon healing. J Orthop Res. 2003;21(5):826-835. doi: https://doi.org/10.1016/S0736-0266(03)00049-4
  8. Chujo T, An H, Akeda K, Miyamoto K, Muehleman C, Attawia M, Andersson G, Masuda K. Effects of growth differentiation factor-5 on the intervertebral disc-in vitro bovine study and in vivo rabbit disc degeneration model study. Spine. 2006;31(25):2909-2917. doi: https://doi.org/10.1097/01.brs.0000248428.22823.86
  9. Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ Jr, Crooker BA, Van Tassell CP, Yang J, Wang Sh, Matukumalli LK, Da Y. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics. 2011;12:408. https://doi.org/10.1186/1471-2164-12-408
  10. Djari A, Esquerre D, Weiss B, Martins F, Meersseman C, Boussaha M, Klopp C, Rocha D. Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics. 2013;14:307. doi: https://doi.org/10.1186/1471-2164-14-307
  11. Edwards CJ, Francis-West PH. Bone morphogenetic proteins in the development and healing of synovial joints. Semin Arthritis Rheum. 2001;31(1):33-42. doi: https://doi.org/10.1053/sarh.2001.24875
  12. Ekegbu UJ, Burrows L, Amirpour-Najafabadi H, Zhou H, Hickford JGH. Gene polymorphisms in PROP1 associated with growth traits in sheep. Gene. 2019;683:41-46. doi: https://doi.org/10.1016/j.gene.2018.10.024
  13. Farooq M, Nakai H, Fujimoto A, Fujikawa H, Kjaer KW, Baig SM, Shimomura Y. Characterization of a novel missense mutation in the prodomain of GDF5, which underlies brachydactyly type C and mild Grebe type chondrodysplasia in a large Pakistani family. Human Genetics. 2013;132(11):1253-1264. doi: https://doi.org/10.1007/s00439-013-1330-3
  14. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW. Mechanisms of GDF-5 action during skeletal development. Development. 1999;126(6):1305-1315.
  15. Hitachi K, Nakatani M, Tsuchida K. Long non-coding RNA myoparr regulates GDF5 expression in denervated mouse skeletal muscle. Non-Coding RNA. 2019;5:33. doi: https://doi.org/10.3390/ncrna5020033
  16. Hou GY, Yuan ZR, Zhou HL, Zhang LP, Li JY, Gao X, Wang DJ, Gao HJ, Xu SZ. Association of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. Mol Biol Rep. 2011;38(7):4705-4708. doi: https://doi.org/10.1007/s11033-010-0605-1
  17. Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D, Cambisano N, et al. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genetics. 2011;43:405-413. doi: https://doi.org/10.1038/ng.814
  18. Kellgren JH, Moore R. Generalized osteoarthritis and Heberden’s nodes. Br Med J. 1952;1:181-187. doi: https://doi.org/10.1136/bmj.1.4751.181
  19. Kiapour AM, Cao J, Young M, Capellini TD. The role of Gdf5 regulatory regions in development of hip morphology. PLoS One. 2018;13(11):e0202785. doi: https://doi.org/10.1371/journal.pone.0202785.
  20. Leonidou A, Irving M, Holden S, Katchburian M. Recurrent missense mutation of GDF5 (p.R438L) causes proximal symphalangism in a British family. World. J. Orthop. 2016;7(12):839-842. doi: 10.5312/wjo.v7.i12.839
  21. Liu YF, Zan LS, Li K, Zhao SP, Xin YP, Lin Q, Tian WQ, Wang ZW. A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Molecular Biology Reports. 2010;37(1):429-434. doi: https://doi.org/10.1007/s11033-009-9604-5
  22. Merino R, Macias D, Gañan Y, Economides AN, Wang X, Wu Q, Stahl N, Sampath KT, Varona P, Hurle JM. Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol. 1999;206(1):33-45. doi: https://doi.org/10.1006/dbio.1998.9129
  23. Mikic B. Multiple effects of GDF5 deficiency on skeletal tissues: implications for therapeutic bioengineering. Ann Biomed Eng. 2004;32(3):466-476. doi: https://doi.org/10.1023/B:ABME.0000017549.57126.51
  24. Miyamoto Y, Mabuchil A, Shi DQ, Kubo T, Takatori Y, Saito S, et al. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nature Genetics. 2007;39:529-533. doi: https://doi.org/10.1038/2005
  25. Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 1995;38(8):1134-1141. doi: https://doi.org/10.1002/art.1780380817
  26. Schenkel FS, Miller SP, Wilton JW. Genetic parameters and breed differences for feed efficiency, growth and body composition traits of young beef bulls. Can J Anim Sci. 2004;84(2):177-184. doi: https://doi.org/10.4141/A03-085
  27. Storm EE, Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development. 1996;122:3969-3979.
  28. Tashiro T, Hiraoka H, Ikeda Y, Ohnuki T, Suzuki R, Ochi T, Nakamura K, Fukui N. Effect of GDF-5 on ligament healing. J Orthop Res. 2006;24(1):71-79. doi: https://doi.org/10.1002/jor.20002
  29. Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP. A human chondrodysplasia due to a mutation in a TGF-β superfamily member. Nature Genetics. 1996;12:315-317. doi: https://doi.org/10.1038/ng0396-315
  30. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40(5):575-583. doi: https://doi.org/10.1038/ng.121
  31. Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-b gene family. J Clin Invest. 1997;100(2):321-330. doi: https://doi.org/10.1172/JCI119537
  32. Wu DD, Li GM, Jin W, Li Y, Zhang YP. Positive selection on the osteoarthritis-risk and decreased-height associated variants at the GDF5 gene in East Asians. PLoS One. 2012;7(8):e42553. doi: https://doi.org/10.1371/journal.pone.0042553
  33. Yang W, Cao L, Liu W, Jiang L, Sun M, Zhang D, Wang S, Lo HYW, Luo Y, Zhang X. Novel point mutations in GDF5 associated with two distinct limb malformations in Chinese: brachydactyly type C and proximal symphalangism. J Hum Genetics. 2008;53:368-374. doi: https://doi.org/10.1007/s10038-008-0253-7
  34. Zhang YR, Gui LS, Li YK, Jiang BJ, Wang HC, Zhang YY, Zan LS. Molecular characterization of bovine SMO gene and effects of its genetic variations on body size traits in Qinchuan cattle (Bos taurus). JMolSci. 2015;16(8):16966-16980. doi: https://doi.org/10.3390/ijms160816966


Kharlamov Anatoly Vasilyevich, Dr. Sci (Agr.), Professor, Head of Department for Beef Cattle Technology and Beef Production, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St.,  29, tel.: 8(3532)43-46-78, e-mail: vniims.or@mail.ru

Frolov Alexey Nikolaevich, Cand. Sci (Agr.), Senior Researcher, Department for Beef Cattle Technology and Beef Production, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8(3532)43-46-78, e-mail: forleh@mail.ru

Zavyalov Oleg Aleksandrovich, Cand. Sci (Agr.), Senior Researcher, Department for Beef Cattle Technology and Beef Production, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences», 460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8(3532)43-46-78, e-mail: oleg-zavyalov83@mail.ru

Tyapugin Yevgeny Aleksandrovich, Dr. Sci (Biol.),Academician of Russian Academy of Sciences, ChiefResearcherLaboratoryofmoleculargeneticresearchandmetallomicsinanimalhusbandry, Federal Research Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Januarya St., tel.: 8(3532)43-46-78, e-mail: vniims.or@mail.ru

Received: 5 September 2019; Accepted: 16 September 2019; Published: 30 September 2019