Sizova EA, Yausheva EV, Nechitaylo KS, Ivanishcheva AP

DOI: 10.33284/2658-3135-102-4-10

 UDC 577.17


This work was carried out as part of research on project No. 18-8-9-19

Comparative characteristics of toxicity of ultrafine particles of copper, zinc and their alloys

in the test of inhibition of bacterial bioluminescence 

Elena A Sizova.1,2, Elena V Yausheva1, Ksenia S Nechitaylo1, Anastasia P Ivanishcheva1

1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

2Orenburg State University (Orenburg, Russia)

Summary. Intensively developing nanotechnologies associated with the discovery of unique properties of ultrafine particles have shown a high potential for their widespread use. However, the lack of a detailed assessment of biological safety in parallel with the proven possibility of their use leads to the need to solve these problems. In addition, the biological response of alloys of two particles will differ from that when testing individual particles. In this regard, the purpose was a comparative study of the toxicity of ultrafine particles of copper, zinc, as well as their alloy and mixture in the test of inhibition of bacterial luminescence using Echerichia coli recommended by the current national standard for medical and biological evaluation of nanomaterials (MR 1.2.2566-09, MU 1.2 .2634-10).

The luminescence intensity of the recombinant strain Echerichia coli of natural marine microorganism Photobacterium leiongnathi with cloned luxCDABE genes under the influence of concentrations (0.1-6×10-6 M) achieved by stepwise dilution of ultrafine particles of zinc, copper, their alloy and mixture was studied. It was established that the level of toxic activity characterized by EC50 values ​​progressively decreased in the series: Zn → CuZn (alloy) → CuZn (mixture) → Cu, with maximum toxicity effect in zinc. The alloy and CuZn mixture occupy a middle position in the toxicity series due to the leveling of toxic effect of zinc by copper.

Key words: ultrafine particles, bacterial cells, bioluminescence, zinc, copper, inhibition.


  1. Deryabin DG, Aleshina ES, Deryabina TD, Efremova LV. Biological activity of ions, nano- and micro-sized Cu and Fe particles determined with a bioluminescence inhibition assay. Questions of Biological, Medical and Pharmaceutical Chemistry. 2011;6:31-36.
  2. Yausheva EV, Sizova EA, Gavrish IA, Lebedev SV, Kayumov FG. Effect of Al2O3 nanoparticles on soil microbiocenosis, antioxidant status and intestinal microflora of red Californian worm (Eisenia foetida). Sel’skokhozyaistvennaya Biologia [Agricultural Biology]. 2017;52(1):191-199. doi: 10.15389/agrobiology.2017.1.191eng
  3. Deryabin DG. Bacterial bioluminescence: fundamental and applied aspects. Moscow: Nauka. 2009:246 p.
  4. Bogoslovskaya OA, Sizova EA, Polyakova VC, Miroshnikov SA, Leipunsky IO, Olkhovskaya IP, Glushchenko NN. Studying of safety of copper nanoparticles introduction with different physical-chemical characteristics into animals' organism. Vestnik of the Orenburg State University. 2009;2(96):124-127.
  5. Deryabin DG, Vasilchenko AS, Aleshina ES, Tlyagulova AS, Nikiyan А An investigation into the interaction between carbon-based nanomaterials and Escherichia coli cells using atomic force microscopy. Nanotechnologies in Russia. 2010;5(11-12):136-141.
  6. Deryabin DG, Aleshina ES, Vasilchenko AS, Deryabina TD, Efremova LV, Karimov IF, Korolevskaya LB. Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnologies in Russia. 2013;8(5-6):113-118.
  7. Sizova EA, Kholodilina TN, Miroshnikov SA, Polyakova VS. Оn development of safety criteria in metal nanoparticles while their introducing to animal organism. Vestnik of the Russian Academy of Agricultural Sciences. 2011;1:40-42.
  8. Lebedev SV, Sizova EA, Gavrish IA. Trophometabolic potential of Eisenia fetida Savigny, 1826 (Oligochata, Lumbricidae) caused by copper nanoparticles and copper oxide in the soil. Povolzhskiy Journal of Ecology. 2017;2:147-156.
  9. Miroshnikov SА, SizovaEA. Nanomaterialsinanimalhusbandry (review). Herald of Beef Cattle Breeding. 2017;3(99):7-22.
  10. Korotkova AM, Lebedev SV, Kayumov FG, Sizova EA. Biological effects of wheat (Triticum vulgare L.) under the influence metal nanoparticles (Fe, Cu, Ni) and their oxides (Fe3O4, CuO, NiO). Sel’skokhozyaistvennaya Biologia [Agricultural Biology]. 2017;52(1):172-182. doi: 10.15389/agrobiology.2017.1.172eng
  11. MU 1.2.2634-10 "Microbiological and molecular genetic assessment of nanomaterials in the representatives of the microbiocenosis". The Federal Center of hygiene and epidemiology of Rospotrebnadzor. Moscow. 2010: 59 p.
  12. Safety assessment of nanomaterials in vitro and in vivo model systems. MethodicalrecommendationsMP2.2566-09. Moscow. 2009: 71 p.
  13. Sizova EA. Effect of copper nanoparticles introduced to the diet on cadmium level of broiler chickens. Herald of Beef Cattle Breeding. 2017a;1(97):13-20.
  14. Sizova EA. Comparative analysis of the different-sized copper and iron nanoparticles biological effects. Vestnik of the Russian Agricultural Science. 2017b;3:13-17.
  15. Sizova EA, Miroshnikov SA, Kalashnikov VV. Morphological and biochemical parameters in Wistar rats influenced by molybdenum and its oxide nanoparticles. Sel’skokhozyaistvennaya Biologiya[Agricultural Biology]. 2016;51(6):929-936.doi: 10.15389/agrobiology.2016.6.929eng
  16. Sizova EA, Yausheva EV. Comparative productivity of broiler chickens injected with variously sized ultrafine iron particles. AnimalHusbandryandFodderProduction. 2019;102(1):6-21. doi: 10.33284/2658-3135-102-1-6
  17. Adeyemi OSSulaiman FA. Evaluation of metal nanoparticles for drug delivery systems. The J Biomed Res. 2015;29(2):145-149. doi: 7555/JBR.28.20130096
  18. Ajdary M, Ghahnavieh MZNaghsh N Sub-chronic toxicity of gold nanoparticles in male mice. Adv Biomed Res.2015;25(4):67. doi: 10.4103/2277-9175.153890
  19. Al Gurabi MAAli DAlkahtani SAlarifi S. In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice. Onco Targets Ther. 2015;2015(8):295-302. doi:
  20. Ayres DM, Davis AP, Gietka PM. Removing heavy metals from wastewater. Engineering Research Centre Report. University of Maryland. 1994; 90 p.
  21. Chen Z, Meng H, Xing G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Letters. 2006;163(2):109-120. doi:
  22. Haynes CL, Van Duyne RP. Nanosphere Lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry B. 2001;105(24):5599-5611. doi: 10.1021/jp010657m
  23. Ding LLiu ZAggrey MOLi CChen JTong L. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles. Mini Rev Med Chem. 2015;15(7):529-542.doi: 2174/138955751507150424104334
  24. Gong MYang HZhang SYang YZhang DQi YZou L. Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging. J Nanobiotechnology. 2015;13:24. doi: 10.1186/s12951-015-0080-x
  25. Ko KS, Kong IC. Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation. Appl Microbiol Biotechnol. 2014;98(7):3295-3303. doi: 10.1007/s00253-013-5404-x
  26. Książyk M, Asztemborska M, Stęborowski R, Bystrzejewska-Piotrowska G. Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bull Environ Contam Toxicol. 2015;94(5):554-558. doi: 10.1007/s00128-015-1505-9
  27. Li L, Fernández-Cruz ML, Connolly M, Conde E, Fernández M, Schuster M, Navas JM. The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro. Sci Total Environ. 2015;1(505):253-260. doi: 10.1016/j.scitotenv.2014.10.020
  28. Lopes IRibeiro RAntunes FERocha-Santos TARasteiro MGSoares AMGonçalves FPereira R. Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium. 2012;21(3):637-648.doi: 10.1007/s10646-011-0808-9
  29. Lu SZhang WZhang RLiu PWang QShang YWu MDonaldson K, Wang Q. Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Part Fibre Toxicol.2015;12(1):5. doi: 10.1186/s12989-015-0082-8.
  30. Hamrahi-michak M, Sadeghi SA, Haghighi H, Ghanbari-kakavandi Y, Razavi-sheshdeh SA, Noughabi MT, Negahdary M. The toxicity effect of cerium oxide nanoparticles on blood cells of male Rat. Annals of Biological Research. 2012;3(6):2859-2866.
  31. Miroshnikov S, Sizova E, Yausheva E, Uimin M, Konev A, Minin A, Yermakov A, Nikiyan H. Comparative toxicity of CuZn nanoparticles with different physical and chemical characteristics. Oriental journal of Chemistry. 2019;35(3):973-981. doi:
  32. Mortimer M, Kasemets K, Heinlaan M, Kurvet I, Kahru A. High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicol in Vitro. 2008;22(5):1412-1417. doi: 10.1016/j.tiv.2008.02.011
  33. Petersen EJ, Henry TB. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review. Environmental Toxicology and Chemistry. 2012;31(1):60-72. doi:
  34. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano‐zinc oxide in environmentally and biologically important matrices. Environmental Toxicology and Chemistry. 2012;31(1):93-99. doi:
  35. Reichle RA, McCurdy KG, Hepler LG. Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5–75 °C. Canadian Journal of Chemistry. 1975;53(24):3841-3845. doi:
  36. Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005;592(1-2):119-137. doi:
  37. Shen MHZhou XXYang XYChao JBLiu RLiu JF. Exposure medium: key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Scientific Reports. 2015;5:9674. doi:10.1038/srep09674
  38. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters. 2015;7(3):219-242. doi:
  39. Sizova Е, Miroshnikov S, Yausheva E, Kosyan D. Comparative characteristic of toxicity of nanoparticles using the test of bacterial bioluminescence. Biosciences, Biotechnology Research Asia. 2015;12(2):361-368. doi:
  40. Sondi ISalopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci.2004;1:275(1):177-182. doi:
  41. Visnapuu M, Joost U, Juganson K, Künnis-Beres K, Kahru A, Kisand V, Ivask A. Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli. Biomed Res Int. 2013;2013:819252. doi:
  42. Wang B, Zhang Y, Mao Z, Yu D, Gao C. Toxicity of ZnO nanoparticles to macrophages due to cell uptake and intracellular release of zinc ions. J Nanosci Nanotechnol. 2014;14(8):5688-5696. doi:
  43. Do J, Wang S, You H, Zhao X. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environmental Toxicology and Pharmacology. 2013;36(2):451-462. doi: doi: 10.1016/j.etap.2013.05.007
  44. Yang HLiu CYang DZhang HXi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol.2009;29(1):69-78. doi: 1002/jat.1385
  45. Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, Xu H, Wei H. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale. 2015;7(2):625-636. doi: 1039/c4nr05061d
  46. Yu SS, Lau CM, Thomas SN, Jerome WG, Maron DJ, Dickerson JH, Hubbell JA, Giorgio TD. Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Int J Nanomedicine. 2012;7:799-813. doi:
  47. Zhao Y, Nalwa Nanotoxicology – interactions of nanomaterials with biological systems. American Scientific Pablishers; 2006: 500 p.

Sizova Elena Anatolyevna, Dr. Sci (Biol.), Head of Centre  “Nanotechnologies in Agriculture”, Federal State Centre for Biological Systems and Agricultural Technologies of Russian Academy of Sciences, Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8-912-344-99-07, e-mail:; Professor, Department of Biology and Soil Science, 460018, Orenburg, Russia, Orenburg State University, 13 Pobedy Ave.

Yausheva Elena Vladimirovna, Cand. Sci. (Biol), Researcher of Centre  “Nanotechnologies in Agriculture”, Federal Research Centre of Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, Federal State Centre for Biological Systems and Agricultural Technologies of Russian Academy of Sciences, Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St.

Nechitailo Ksenia Sergeevna, 2nd year postgraduate student, Federal State Centre for Biological Systems and Agricultural Technologies of Russian Academy of Sciences, Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St.

Ivanishcheva Anastasia Pavlovna, Laboratory Assistant Researcher of Centre “Nanotechnologies in Agriculture”,  Federal State Centre for Biological Systems and Agricultural Technologies of Russian Academy of Sciences, Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel .: 8-987-843-58-22, e-mail:

Received: 15 November 2019; Accepted: 16 December 2019; Published: 31 December 2019