Grechkina VV, Sheyda EV, Lebedev SV, Makaeva AM, Vershinina IA, Gubaidullina IZ, Ushakov AS

DOI: 10.33284/2658-3135-102-4-150

UDC 636.084.1:591.11:665.32/.35


The work is funded by the Ministry of Science and Education of the Russian Federation to carry out fundamental scientific research determined by the Presidium of the Russian Academy of Sciences (Agreement No. 075-02-2019-1847).

Morphological and biochemical blood parameters of the Kazakh white-headed calves after the additional introduction of vegetable fats into the diet             

Victoria V Grechkina1,3, Elena V Sheyda2, Svyatoslav V Lebedev1,2, Aina M Makaeva1,

                         Irina A Vershinina1, Ilmira Z Gubaidullina1, AlexanderS Ushakov4

1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

2Orenburg State University (Orenburg, Russia)

3Orenburg State Agrarian University (Orenburg, Russia)

4All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition–branch of the Federal Science Center for Animal Husbandry named after Academy Member LK Ernst (Borovsk, Russia)

Summary. The article studied the effect of fat added to the diet on morphological and biochemical blood parameters of Kazakh white-headed calves (n=3) with an average weight of 115-120 kg at the age of 7 months. The diet of calves of group I additionally included sunflower oil, II group – soybean oil, III – flaxseed. The results of the study showed that animals from the experimental groups exceeded the control calves in hemoglobin by 31,18% (group I), 27,95% (group II), 11,82% (group III) (P≤0,05).In experimental group I, the urea level increased by 59,37%, creatinine – 19,06%, ALT – 33,61%, AST – 18,32% (P≤0,05) relative to control calves. During the experiment, the experimental group II that received soybean fat advanced in cholesterol by 86,89%, total protein – 38,01%, triglycerides – 55,17%, ALT – 21,01%, AST – 24,20% (P≤0,05).The calves of group III were characterized by the highest concentration of calcium – 49,79%, inorganic phosphorus – 28,57% and iron – 71,35%. Thus, the results showed that additional introduction of fat into the diet changes blood parameters of lipid and protein metabolism.

Key words: cattle, young animals, Kazakh white-headed breed, feeding, blood, fat, lipid metabolism, morphology, biochemistry.


  1. Levakhin GI, Miroshnikov IS, Ryazanov VA, Grechkina VV. Activity of digestive enzymes and the amount of digestive juices in calves fed diets containing protein of different quality. Izvestia Orenburg State Agrarian University. 2018;6(74):244-245.
  2. Vishnyakov AI, Ushakov AS, Lebedev SV. Morfology of cages of a red marrow and peripheral blood of chickens at introduction in an organism nanoparnicles copper. Herald of Beef Cattle Breeding. 2011;2(64):96-102.
  3. Lebedev SV, Kwan OV, Gubaidullina IZ, Gavrish IA, GrechkinaVV, Momcilovic B, Ryabov NI. Effect of chromium nanoparticles on digestive enzymes activity and morphological and biochemical parameters of calf blood. Animal Husbandry and Fodder Production. 2018;101(4):136-142.
  4. Lebedev SV, Levakhin GI, Gubaidullina IZ, Markova IV, Sheida EV. Effect of different protein sources in the ration on nutrients assimilation in the digestive tract of animals. Izvestia Orenburg State Agrarian University. 2018;6(74):205-208.
  5. Donskova LA, Belyaev NM, Leiberova NV. Fatty-acid composition of lipids as functional purpose indicator of poultry meat products from: theoretical and practical aspects. Food Industry. 2018;3(1):4-10. doi: 10.29141/2500-1922-2018-6-1-1
  6. Zubtsov VA, Minevich IE. The strategy of the technology development in forage production on the flax seeds and its products’ processing use. Journal of VNIIMZH. 2015;4(20):72-79.
  7. Pestis VK, Shareiko NA, Yatsko NA, Pakhomov IYa, Razumovskii NP, Mikulenok VG, Ganushchenko OF, Sekhin AA. Feeding farm animals: textbook. manual for students of higher. agricultural textbook. institutions in the specialties "Veterinary medicine", "Zootechnics". Pestis VK,editor. Minsk: IVC of the Ministry of Finance; 2009: 540 p.
  8. Lapotko AM. Physiology of digestion and feeding of young cattle. 2005: 220 p.
  9. Osepchuk DV, Ratoshny AN, Shantyz AYu, Skvortsova LN. Meat productivity of young geese depending on the features of feeding. Proceedings of the Kuban State Agrarian University. 2015;53:198-202.
  10. Ovchinnikov AA, Zasypkin YuF. Sorghum oil-cakes effectiveness usage in the rations of cattle young animals. Scientific Notes Kazan Bauman State Academy of Veterinary Medicine. 2010;200:126-132.
  11. Titov VN, Aripovskii AV, Schekotov VV., Schekotova AP, Kukharchuk VV. The oleic triglycerides of palm oil and palmitic triglycerides of creamy fat. The reaction of palmitoylation, potassium and magnesium palmitate, absorption of fatty acids by enterocytes and microbiota of large intestine. The Russian Clinical Laboratory Diagnostics 2016;61(8):452-461. (In Russ)]. Doi: 10.18821/0869-2084-2016-61-8-452-461
  12. Osepchuk DV. The experience of using hard palm fats in diets for young pigs. Collection of scientific papers of the Stavropol Research Institute of Animal Husbandry and Feed Production. 2012;3(1-1):145-148.
  13. Popkov NA, Fisinin VI, Egorov NA. Feed and biologically active substances: a guide. Minsk: Belarusian science; 2005: 881 p.
  14. Sckvortsova LN, Svistunov AA. Vegetable oils influence on broiler chicken productivity and meat qualities. PoultryandChickenProducts. 2013;1:58-60.
  15. Kirilov M, Vinogradov V, Anisova N, Fatrakhmanov R, Smekalov N, Sipaty D, Gusev I. Heat-treated flax seeds in starter feed for calves. Dairy and Beef Cattle Breeding. 2009;2:2-4.
  16. Shagbanova DA, Nurmagomedova PM. The effect of flax extract (Linum usitatissimum L.) on biochemical blood parameters of people at risk of toxic hepatitis.Young Scientist. 2014;7(66):226-228.
  17. Shtele A, Osmanyan L, Gaponova L. The dry palm fat for poultry. Сompound Feeds. 2005;6:63.
  18. Radchikov VF, Ganushchenko OF, Gurin VK, Shinkareva SL, LyundyshevVA. Enriching agent based on flax seeds and barley grits in the diets for calves. Proceedings of the National Academy of Sciences of Belarus.Agrarian series.2015;1:92-97. (In Russ)].
  19. Alvarenga RR, ZangeronimoMG,PereiraLJ, Rodrigues PB, Gomide EM. Lipoprotein metabolism in poultry. World's Poultry Science Journal. 2011;67(3):431-440. doi:
  20. Chen Z. Adapter proteins regulate insulin resistance and lipid metabolism in obesity. Sci Bull. 2016;61:1489-1497. doi: 10.1007/s11434-016-1058-2
  21. Crescenzo R, Bianco F, Coppola P, Mazzoli A, Tussellino M, Carotenuto R, et al. Fructose supplementation worsens the deleterious effects of short-term high-fat feeding on hepatic steatosis and lipid metabolism in adult rats. Exp Physiol. 2014;99(9):1203-1213. doi: 10.1113/expphysiol.2014.079632
  22. Debosch BJ, Chen Z, Finck BN, Chi M, Moley KH. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fet male mice. Mol Endocrinol. 2013;27(11):1887-1896.doi: 10.1210/me.2013-1137
  23. Dezhatkina SV, Lubin NA, DosorovAV, Dezhatkin МE. The use of soy okara in feeding of pigs. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016;7(5):2573-2577.
  24. Fellmann L, Nascimento AR, Tibiriça E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther. 2013;137(3):331-340. doi:
  25. Fisinin VI, Miroshnikov SA, Sizova EA, Ushakov AS, Miroshnikova EP. Metal particles as trace-element sources: current state and future prospects. World's Poultry Science Journal. 2018;74(3):523-540. doi:
  26. GongYZ, SunSW, LiaoDF. Interaction and regulation of cell inflammation and lipid metabolism. Chinese Journal of Arterioscler. 2017:25(6):623-629
  27. Hocking SL, et al. Subcutaneous fat transplantation alleviates diet-induced glucose intolerance and inflammation in mice. Diabetologia. 2015; 58(7):1587-1600. doi:
  28. Jing X, Jian-Bo Wan, Chengwei He. Concise review: regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells. 2014;32(5):1092-1098. doi:
  29. LageR, DieguezC, Vidal-PuigA, LopezM. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends in Molecular Medicine. 2008;14(12):539-549. doi:
  30. Li S, Li X. Leptin in normal physiology and leptin resistance. Sci Bull. 2016;61(19):1480-1488. doi:
  31. MaoT, YangL, LiuY. Endoplasmic reticulum stress and metabolic dysfunction. Chinese Journal of Cell Biology. 2011;33(7):727-737.
  32. Nakamura М, Nomura S, Yamakawa T, et al. Endogenous calcitonin regulates lipid and glucose metabolism in diet-induced obesity mice. Scientific Reports. 2018;8:17001. doi:10.1038/s41598-018-35369-5
  33. Oliveira JE, Uni Z, Ferket PR. Important metabolic pathways in poultry embryos prior to hatch. World's Poultry Science Journal. 2008;64(4):488-499. doi:
  34. Pang J, Xi C, Huang X, Cui J, Gong H, Zhang T. Effects of excess energy intake on glucose and lipid metabolism in C57BL/6 Mice. Plos One. 2016;11(1):e0146675. doi:10.1371/journal. pone.0146675
  35. The Treatment of Disorders of Lipid Metabolism. Deutsches Arzteblatt International. 2016;113(15):261-268. doi: 10.3238/arztebl.2016.0261
  36. Réblová Z, Součková Š, FišnarJ, KoplíkR. Prooxidant capacity of thermoxidised plant oils. Czech Journal of Food Sci. 2015;5:416-423. doi: 10.17221/578/2014-CJFS
  37. ShaodongC, HaihongZ, MantingL, Guohui L, ZhengxiaoZ, YmZ. Research of influence and mechanism of combining exercise with diet control on a model of lipid metabolism rat induced by high fat diet. Lipids in Health and Disease. 2013;12:21. doi:
  38. Tang Q. Lipid metabolism and diseases. Sci. Bull. 2016;61(19):1471-1472. doi: 10.1007/s11434-016-1174-z
  39. Walther TC, Farese RVJr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687-714. doi: 10.1146/annurev-biochem-061009-102430
  40. Wendlinger С, Hammann S, VetterW. Various concentrations of erucic acid in mustard oil and mustard. Food Chemistry. 2014;153:393-397. doi:
  41. WilliamsJJ, PalmerTM. Cavin-1: caveolae-dependent signalling and cardiovascular disease. Biochemical Society Transactions. 2014;42(2):284-288. doi:
  42. XieTH, LiJX, MaoTY, et al. An ErChen and YinChen decoction ameliorates high-fat-induced nonalcoholic steatohepatitis in rats by regulating JNK1 signaling pathway. Evidence-Based Complementary and Alternative Medicine. 2017;2017:4603701. doi:
  43. YangHJ, YimN, LeeKJ. Simultaneous determination of nine bioactive compounds in Yijin-tang via high-performance liquid chromatography and liquid chromatography-electrospray ionization-mass spectrometry. Integrative Medicine Research. 2016;5(2):140-150. doi:
  44. Zha LY, Wang MQ, Xu ZR, Gu LY. Efficacy of chromium (III) supplementation on growth, body composition, serum parameters, and tissue chromium in rats. Biological Trace Element Research. 2007;119(1):42-50. doi:
  45. Zhang BB, Zhou G, LiC. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metabolism. 2009;9(5):407-416. doi:
  46. Zhou J, Liu H, Zhou S, He P, Liu X. Adaptor protein APPL1 interacts with EGFR to orchestrate EGF-stimulated signaling. Science Bulletin. 2016;61(19):1504-1512.doi:

Grechkina Victoria Vladimirovna,Cand. Sci (Biol.), Researcher, Laboratory for Biological Testing and Expertise, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., Associate Professor, Department of Noncommunicable Animal Diseases, Orenburg State Agrarian University, 460014, Orenburg, Russia, 18 Chelyuskintsev, St., tel.: 8-922-877-14-97, e-mail:

Sheyda Elena Vladimirovna, Cand. Sci (Biol.), Researcher, Experimental Biological Clinic, 460018, Orenburg, Russia, Orenburg State University, 13 Pobedy Ave. tel.: 8-987-862-64-05, e-mail:

Lebedev Svyatoslav Valerevich, Dr. Sci. (Biol.), Deputy Director, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St.,  tel.: 8-912-345-87-38,e-mail:; Associate Professor, Department of Biotechnology of Animal Raw Materials and Aquaculture, 460018, Orenburg, Russia, Orenburg State University, 13 Pobedy Ave.

Makaeva Aina Maratovna, Junior Researcher of the Centre "Nanotechnologies in Agriculture", Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St.,  tel.: 8-919-842-46-99, e-mail:

Vershinina Irina Aleksandrovna, junior research associate of Laboratory for Biological Testing and Expertises,Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St.,  460000, е, tel.: 8-987-798-67-88

Gubaidullina Ilmira Zakievna, postgraduate student of veterinary medicine and zootechnology, Junior Researcher associate of Laboratory for Biological Testing and Expertises,Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., е-mail:, tel.: 8-912-843-10-69

Ushakov Alexander SergeyevichCand. Sci (Biol.), Senior Researcher, Laboratories Of Physiology Of Digestion And Interstitial MetabolismAll-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition– branch of the Federal Science Center for Animal Husbandry named after Academy Member LK Ernst 249013, Kaluga Region, Borovsk, Russia, e-mail:

Received: 11 December 2019; Accepted: 16 December 2019;Published: 31 December 2019