Lyudmila V Vlasenko, Dianna B Kosyan

 DOI: 10.33284/2658-3135-104-2-8

UDC 579.66

Acknowledgements:

Research was carried out according the plan of research scientific works on 2021-2023 yy. FSBSI FRC BST RAS (No 0526-2019-0002)

Metal nanoparticles as potential inhibitors of «Quorum sensing» systems in bacteria (review)

                                             Lyudmila V Vlasenko, Dianna B Kosyan

Federal Research Centre of Biological System and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. The study of inhibitors of «Quorum sensing» system is currently an important area of research. Compounds that are able to block the «quorum sensing» system can be used as new antibacterial agents, since they are mainly involved in regulating the virulence of drug-resistant pathogenic bacteria. Potential inhibitors of the «quorum sensing» system are metal nanoparticles. This activity is described for silver, gold, titanium dioxide, silicium dioxide, and zinc oxide nanoparticles. The review presents a generalized material containing modern information from foreign authors on the use of nanoparticles as inhibitors of the «quorum sensing» system in bacteria.

Key words: quorum sensing, pathogenic bacteria, biofilms, nanoparticles.

Referenсes

  1. Ali SG, Ansari MA, Jamal QMS, Khan HM, Jalal M, Ahmad H, Mahdi AA. Antiquorum sensing activity of  silver  nanoparticles in P. aeruginosa: an in silico study. Silico Pharmacol. 2017;5:12. doi: 10.1007/s40203-017-0031-3
  2. Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Alsharaeh E, Khan MS, Hussain A, Rehman MT, Yusuf M, Hassan I, Khan JM, Ashraf GM, Alsalme A, Al-Ajmi MF, Tarasov VV, Aliev G. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting  broad-spectrum  quorum  sensing  and   biofilm. Sci Rep. 2016;6:36761. doi: 10.1038/srep36761
  3. Al-Shabib NA, Husain FM, Hassan I, Khan MS, Ahmed F, Qais FA, Oves M, Rahman M, Khan RA, Khan A, Hussain A, Alhazza IM, Aman S, Noor S, Ebaid H, Al-Tamimi J, Khan JM, Al-Ghadeer ARM, Khan MKA, Ahmad I. Biofabrication of zinc oxide nanoparticle from Ochradenus baccatus leaves: broad-spectrum antibiofilm activity, protein binding studies, and In Vivo toxicity and stress studies. Advanced Nanomaterials for Biological Applications. 2018;2018:8612158. doi: 10.1155/2018/8612158
  4. Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal. 2016;20(1):1-11. doi: 10.7508/ibj.2016.01.001
  5. Bai F, Han Y, Chen J, Zhang XH. Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture. 2008;274(1):36-40. doi: 10.1016/j.aquaculture.2007.11.024
  6. Bakand S, Hayes A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. J Mol Sci. 2016;17(6):929. doi: 10.3390/ijms17060929
  7. Baloch Z, Aslam B, Muzammil S, Khurshid M, Rasool MH, Ma K. Selection inversion: a probable tool against antibiotic resistance. Infect Drug Resist. 2018;11:1903-1905. doi: 10.2147/IDR.S176759
  8. Banerjee AN. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol Sci Appl. 2011;4:35-65. doi: 10.2147/NSA.S9040
  9. Capek I. Preparation and functionalization of gold nanoparticles. J Surf Sci Technol. 2013;29(3-4):1-18.
  10. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1-12. doi: 10.1016/j.toxlet.2007.10.004
  11. Chu Z, Huang Y, Li L, Tao Q, Li Q. Physiological pathway of human cell damage induced by genotoxic crystalline silica nanoparticles. Biomaterials. 2012;33(30),7540-7546. doi: 10.1016/j.biomaterials.2012.06.073
  12. Defoirdt T, Brackman G, Coenye T. Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol. 2013;21(12):619-624. doi: 10.1016/j.tim.2013.09.006
  13. Delalande L, Faure D, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y. N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol Ecol. 2005;52(1):13-20. doi: 10.1016/j.femsec.2004.10.005
  14. Devescovi G, Kojic M, Covaceuszach S, Cámara M, Williams P, Bertani I, Subramoni S, Venturi V. Negative regulation of violacein biosynthesis in Chromobacterium violaceum. Front Microbiol. 2017;8:349. doi: 10.3389/fmicb.2017.00349
  15. Diggle SP, Crusz SA, Cámara M. Quorum sensing. Curr Biol. 2007;17(21):R907-R910. doi: 10.1016/j.cub.2007.08.045
  16. Dong J, Ma Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 2015;9(5):658-676. doi: 10.3109/17435390.2015.1009187
  17. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol. 2002;68(4):1754-1759. doi: 10.1128/aem.68.4.1754-1759.2002
  18. Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. Vijayaraghavan R, Saral AM, Senthilnathan K, Kumar BR. IOP Conference Series: Materials Science and Engineering: 14th International Conference on Science, Engineering and Technology (14th ICSET-2017); 2-3 May 2017; VIT University, Vellore, Tamil Nadu, India. Bristol, England: IOP Publishing; 2017;263(3):032019. doi: 10.1088/1757-899X/263/3/032019
  19. Feng L, Xie N, Zhong J. Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials (Basel). 2014;7(5): 3919-3945. doi: 10.3390/ma7053919
  20. Furiga A, Lajoie B, Hage SE, Baziard G, Roques C. Impairment of Pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor. Antimicrob Agents Chemother. 2015;60(3):1676-1686. doi: 10.1128/AAC.02533-15
  21. García-Lara B, Saucedo-Mora MÁ, Roldán-Sánchez JA, Pérez-Eretza B, Ramasamy M, Lee J, Coria-Jimenez R, Tapia M, Varela-Guerrero V, García-Contreras R. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol. 2015;61(3):299-305. doi: 10.1111/lam.12456
  22. Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Therap. 2018;1(3):1700033. doi: 10.1002/adtp.201700033
  23. Gonzalez JE, Keshavan ND. Messing with bacterial quorum sensing. Microbiol Mol Biol Rev. 2006;70(4):859-875. doi: 10.1128/MMBR.00002-06
  24. Haque E, Ward AC. Zebrafish as a model to evaluate nanoparticle. Nanomaterials (Basel). 2018;8(7):561. doi: 10.3390/nano8070561
  25. Hawver LA, Jung SA, Ng WL. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev. 2016;40(5):738-752. doi: 10.1093/femsre/fuw014
  26. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35(2):247-274. doi: 10.1111/j.1574-6976.2010.00247.x
  27. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. Bacterial biofilm and associated infections. Journal of the Chinese Medical Association. 2018;81(1):7-11. doi: 10.1016/j.jcma.2017.07.012
  28. Kalia VC, Wood TK, Kumar P. Evolution of resistance to quorum-sensing inhibitors. Microb Ecol. 2014;68(1):13-23. doi: 10.1007/s00248-013-0316-y
  29. Kato N, Tanaka T, Nakagawa S, Morohoshi T, Hiratani K, Ikeda T. Control of virulence factor expression in opportunistic pathogens using cyclodextrin immobilized gel. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2007;57(1):419-423. doi: 10.1007/s10847-006-9228-5
  30. Kendall MM, Sperandio V. Quorum sensing by enteric pathogens. Curr Opin Gastroenterol. 2007;23(1):10-15. doi: 10.1097/MOG.0b013e3280118289
  31. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7):908-931 doi: https://doi.org/10.1016/j.arabjc.2017.05.011
  32. Khurana C, Sharma P, Pandey OP, Chudasama B. Synergistic effect of metal nanoparticles on the antimicrobial activities of antibiotics against biorecycling microbes. J Mater Sci Technol. 2016;32(6):524-532. doi: 10.1016/j.jmst.2016.02.004
  33. Kim MK, Zhao A, Wang A, Brown ZZ, Muir TW, Stone HA, Bassler BL. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nat Microbiol. 2017;2:17080. doi: 10.1038/nmicrobiol.2017.80
  34. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6(1):26-41. doi: 10.1007/s13238-014-0100-x
  35. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8(10):10682-10686. doi: 10.1021/nn5042625
  36. Lima E, Guerra R, Lara V, Guzmán A. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J. 2013;7(1):11. doi: 10.1186/1752-153X-7-11
  37. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol. 2003;47(3):849-860. doi: 10.1046/j.1365-2958.2003.03351.x
  38. Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res. 2013;46(3):702-713. doi: 10.1021/ar300028m
  39. Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP. Effect of biologically synthesised silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnol. 2012;6(3):110-114. doi: 10.1049/iet-nbt.2011.0061
  40. Melchior MB, van Osch MHJ, Graat RM, van Duijkeren E, Mevius DJ, Nielen M, Gaastra W, Fink-Gremmels J. Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains. Vet Microbiol. 2009;137(1-2):83-89. doi: 10.1016/j.vetmic.2008.12.004
  41. Miller EL, Kjos M, Abrudan MI, Roberts IS, Veening JW, Rozen DE. Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. ISME J. 2018;12(10):2363-2375. doi: 10.1038/s41396-018-0178-x
  42. Miller KP. Bacterial communication and its role as a target for nanoparticle-based antimicrobial therapy [dissertation]. Sount California: Clemson University; 2015:189 p.
  43. Munir S, Shah AA, Shahid M, Manzoor I, Aslam B, Rasool MH, Saeed M, Ayaz S, Khurshid M. Quorum sensing interfering strategies and their implications in the management of biofilm-associated bacterial infections. Brazilian Archives of Biology and Technology. 2020;63:e20190555. doi: https://doi.org/10.1590/1678-4324-2020190555
  44. Naik K, Kowshik M. Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. J Appl Microbiol. 2014;117(4):972-983. doi: 10.1111/jam.12589
  45. Navarro E, Baun A, Behra R., Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17(5):372-386. doi: 10.1007/s10646-008-0214-0
  46. Paul D, Gopal J, Kumar M, Manikandan M. Nature to the natural rescue: silencing microbial chats. Chem Biol Interact. 2018;280:86-98. doi: 10.1016/j.cbi.2017.12.018
  47. Pejin B, Ciric A, Glamoclija J, Nikolic M, Sokovic M. In vitro anti-quorum sensing activity of phytol. Natural Product Research. 2015;29(4):374-377. doi: 10.1080/14786419.2014.945088.
  48. Qais FA, Khan MS, Ahmad I. Nanoparticles as quorum sensing inhibitor: prospects and limitations. In: Kalia VC, editors. Biotechnological Applications of Quorum Sensing Inhibitors, Springer, Singapore. 2018:227-244. doi: 10.1007/978-981-10-9026-4_11.
  49. Ravindran D, Ramanathan S, Arunachalam K, Jeyaraj GP, Shunmugiah KP, Arumugam VR. Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: an in vitro study. J Appl Microbiol. 2018;124(6):1425-1440. doi: 10.1111/jam.13728
  50. Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol. 2018;9:203. doi: 10.3389/fphar.2018.00203
  51. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427. doi: 10.1101/cshperspect.a012427
  52. Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Scientific World Journal. 2014;2014:925494. doi: 10.1155/2014/925494
  53. Sadekuzzaman M, Yang S, Mizan MFR, Ha SD. Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf. 2015;14(4):491-509. doi: 10.1111/1541-4337.12144
  54. Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV. Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chem Mater. 2008;20(7):2455-2460. doi: 10.1021/cm7033867
  55. Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam: Part A Chem Anal Control Expo Risk Assess. 2014;31(2):173-186. doi: 10.1080/19440049.2013.865147
  56. Tiaden A, Hilbi H. α-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors (Basel). 2012;12(3):2899-2919. doi: 10.3390/s120302899
  57. Vijayan SR, Santhiyagu P, Singamuthu M, Kumari Ahila N, Jayaraman R, Ethiraj K. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed Turbinaria conoides, and their antimicrofouling activity. Sci World J. 2014;2014:938272. doi: 10.1155/2014/938272
  58. Vinoj G, Pati R, Sonawane A, Vaseeharan B. In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against  Proteus  species.  Antimicrob  Agents Chemother. 2015;59(2):763-771. doi: 10.1128/AAC.03047-14
  59. Wang L, Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. J Nanomedicine. 2017;12:1227-1249. doi: 10.2147/IJN.S121956
  60. Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313-320. doi: 10.1038/nature24624
  61. Wolska KI, Grudniak AM, Markowska K. Inhibition of bacterial quorum sensing systems by metal nanoparticles. Rai M, Shegokar R, editors. Metal Nanoparticles in Pharma. Springer, Cham. 2017; 123-138 p. doi: 10.1007/978-3-319-63790-7_7
  62. Xavier KB, Bassler BL. LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol. 2003;6(2):191-197. doi: 10.1016/s1369-5274(03)00028-6

Vlasenko Lyudmila Viktorovna, Junior Researcher, I.O. Head of the Laboratory of Selection and Genetic Research in Livestock Breeding, Federal Research Centre of Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, 460000, Orenburg, 29 9 Yanuarya st., tel .: 8-922-865-77-71, e-mail: lv.efremova@yandex.ru

Kosyan Dianna Bagdasarovna, Cand. Sci. (Biol.), I.O. Head of the Laboratory of Selection and Genetic Research in Livestock Breeding, Federal Research Centre of Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, 460000, Orenburg, 29 9 Yanuarya st., tel .: +79228448915, e-mail: kosyan.diana@mail.ru

Received: 26 May 2021; Accepted: 15 June 2021; Published: 30 June 2021

Download