Kinispai M Dzhulamanov, Nikolay P Gerasimov, Vladimir I Kolpakov
Animal Husbandry and Fodder Production. 2021. Vol. 104, no 4. Р. 57-66.
doi:10.33284/2658-3135-104-4-57
The breeding value assessment of the first-calf cowbane Aberdeen-Angus breed
of different genotypes using a contactless automated system
Kinispai M Dzhulamanov1, Nikolay P Gerasimov2, Vladimir I Kolpakov3
1,2,3Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
1 kinispai.d@yandex.ru, https://orcid.org/0000-0001-8039-7471
2nick.gerasimov@rambler.ru, https://orcid.org/0000-0003-2295-5150
3vkolpakov056@yandex.ru, https://orcid.org/0000-0001-9658-7034
Abstract. The automated system take over from labor-intensive subjective methods of assessing[1]productive and tribal qualities. It can predict many economic and useful features. The purpose of our research was to study the formation of breeding value of the Aberdeen-Angus breed of different genotypes using a contactless automated assessment system. For this, animals belonging to the Australian (n=15) and American (n=15) breeds were isolated in the breeder flock of the Aberdeen-Angus breed. Body and live mass measurements were determined using automatic identification of morphological characteristics of each animal based on 3D cameras. The Aberdeen Anguses of the American selection were characterized by the largest size and massive based on three-dimensional measurement data. They exceeded peers in absolutely all parameters of weight and linear growth. A subjective assessment of the constitution and points, carried out visually on a 100-point scale, confirmed 3D data on the size and harmoniousness of the first-calf cowbane frame of American selection. Thus, the tested method of contactless determination of breeding value in meat cattle breeding provides labor savings during the field stage of valuation, avoids human contact with an animal when measuring weight and linear growth, increases the objectivity and reliability of analysis and evaluation of breeding processes in breeding herds and predicts the productivity of meat cattle based on the results of genetic examination.
Keywords: cattle, first-calf cowbane, Aberdeen-Angus breed, breeding value, living mass, linear measurements, contactless measurement
Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2023 FSBRI FRC BST RAS (No. 0526-2021-0001).
For citation: Dzhulamanov KM, Gerasimov NP, Kolpakov VI. The breeding value assessment of the first-calf cowbane Aberdeen-Angus breed of different genotypes using a contactless automated system. Animal Husbandry and Fodder Production. 2021;104(4):57-66. (In Russ.). https://doi.org/10.33284/2658-3135-104-4-57
References
- Aisanov ZM. Identification of cow type constitution. Zootekhniya. 1998;4:5-8.
- Lefler TF, Bagaev VV. The exterior characteristics by the method of the body-build measurements and indexes. The Bulletin of KrasGAU. 2014;9(96):142-146.
- Amerkhanov KhA, Dunin IM, Sharkaev VI et al. The procedure and conditions for the bonitioning of breeding cattle of the meat direction of productivity. Moscow: FGBNU «Rosinformagrotekh»; 2012:39 p.
- Ruchay AN, Dorofeev KA, Kolpakov VI, Dzhulamanov KM, Kober VI. Development of a non-contact system for measuring morphological characteristics of beef cattle. Animal husbandry and fodder production. 2020;103(2):157-164. doi: 10.33284/2658-3135-103-2-157
- Alderson GLH. The development of a system of linear measurements to provide an assessment of type and function of beef cattle. Animal Genetic Resources. 1999;25:45-55. doi: 10.1017/S1014233900005782
- Bene S, Nagy B, Nagy L, Kiss B, Polgár JP, Szabó F. Comparison of body measurements of beef cows of different breeds. Archiv Tierzucht. 2007;50(4):363-373. doi: 10.5194/aab-50-363-2007
- Ozkaya S, Bozkurt Y. The accuracy of prediction of body weight from body measurements in beef cattle. Archiv Tierzucht. 2009;52(4):371-377. doi: 10.5194/aab-52-371-2009
- Cozler YL, Allain C, Caillot A, Delouard JM, Delattre L, Luginbuhl T, Faverdin P. High-precision scanning system for complete 3d cow body shape imaging and analysis of morphological traits.Computers and Electronics in Agriculture. 2019;157:447-453. doi: 10.1016/j.compag.2019.01.019
- Hertem TV, Tello AS, Viazzi S, Steensels M, Bahr C, Romanini CEB, Lokhorst K, Maltz E, Halachmi I, Berckmans D. Implementation of an automatic 3D vision monitor for dairy cow locomotion in a commercial farm. Biosystems Engineering. 2018;173:166-175. doi: 10.1016/j.biosystemseng.2017.08.011
- Kawasue K, Win KD, Yoshida K, Tokunaga T. Black cattle body shape and temperature measurement using thermography and kinect sensor. Artificial Life and Robotics. 2017;22(4):464-470. doi: 10.1007/s10015-017-0373-2
- Kuzuhara Y, Kawamura K, Yoshitoshi R, Tamaki T, Sugai S, Ikegami M, Kurokawa Y, Obitsu T, Okita M, Sugino T, Yasuda T. A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system. Computers and Electronics in Agriculture.2015;111:186-193. doi: 10.1016/j.compag.2014.12.020
- Maki N, Nakamura S, Takano S, Okada Y. 3D model generation of cattle using multiple depthmaps for ICT agriculture. Barolli L, Terzo O, editos. Сomplex, intelligent, and software intensive systems: proceedings of the 11th international conference on complex, intelligent, and software intensive systems (CISIS 2018). Advances in Intelligent Systems and Computing. Cham: Springer InternationalPublishing. 2018;611:768-777. doi: 10.1007/978-3-319-61566-0_72
- Nir O, Parmet Y, Werner D, Adin G, Halachmi I. 3D computer-vision system for automatically estimating heifer height and body mass. Biosystems Engineering. 2018;173:4-10. doi: 10.1016/j.biosystemseng.2017.11.014
- Salau J, Haas JH, Junge W, Thaller G. A multi-kinect cow scanning system: Calculating linear traits from manually marked recordings of holstein-friesian dairy cows. Biosystems Engineering. 2017;157:92-98. doi: 10.1016/j.biosystemseng.2017.03.001
- Song X, Bokkers EAM, van Mourik S, Groot Koerkamp PWG, van der Tol PPJ. Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions.Journal of Dairy Science. 2019;102(5):4294-4308. doi: 10.3168/jds.2018-15238
- Tasdemir S, Urkmez A, Inal S. Determination of body measurements on the holstein cows using digital image analysis and estimation of live weight with regression analysis. Computers and Electronicsin Agriculture. 2011;76(2):189-197. doi: 10.1016/j.compag.2011.02.001
- Viazzi S, Bahr C, Hertem TV, Schlageter-Tello A, Romanini CEB, Halachmi I, Lokhorst C, Berckmans D. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Computers and Electronics in Agriculture. 2014;100:139-147. doi: 10.1016/j.compag.2013.11.005
- Xiang Y, Nakamura S, Tamari H, Takano S, Okada Y. 3D model generation of cattle by shapefrom-silhouette method for ICT agriculture. Barolli L, Xhafa F, Ikeda M, editors. Proceedings – 10th International conference on complex, intelligent, and software intensive systems (CISIS 2016), Fukuoka Institute of technology (FIT)6-8 July 2016; Japan, Fukuoka: IEEE, 2016:611-616. doi: 10.1109/CISIS.2016.104
Information about the authors:
Kinispai M Dzhulamanov, Dr. Sci. (Agriculture), Head of the Breeding and Genetic Center For Beef Cattle Breeds, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Russia, 29 9 Yanvarya St., tel.: 8(3532)30-81-74.
Nikolay P Gerasimov, Dr. Sci. (Biology), Senior Researcher, Breeding and Genetic Center For Beef Cattle Breeds, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Russia, 29 9 Yanvarya St., cell: 8-912-358-96-17.
Vladimir I Kolpakov, Cand. Sci (Agriculture), Researcher of the Breeding and Genetic Center For Beef Cattle Breeds, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, 29 9 Yanvarya St., tel.: 8(3532)30-81-74.
Статья поступила в редакцию 15.11.2021; одобрена после рецензирования 23.11.2021; принята к публикации 13.12.2021.
Download