Oksana V Shoshina, Svyatoslav V Lebedev, Elena V Sheyda
Animal Husbandry and Fodder Production. 2021. Vol. 104, no 4. Р. 170-181.
doi:10.33284/2658-3135-104-4-170
The role of iron in digestion in polygastric animals (review)
Oksana V Shoshina, Svyatoslav V Lebedev, Elena V Sheyda
1,2,3Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
1oksana.shoshina.98@mail.ru, https://orcid.org/0000-0003-4104-3333
2lsv74@list.ru, https://orcid.org/0000-0001-9485-7010
3elena-snejjda@mail.ru, https://orcid.org/0000-0002-2586-613X
Abstract. Iron is one of the most important metals in the animal body, which is contained in animals and plants tissues. Iron proteins perform various functions in the body: hemoglobin carries oxygen to tissues and organs, myoglobin binds and reserves oxygen. Cytochromes, cytochrome oxidases, catalases and peroxidases are enzymes responsible for the growth of live weight and the safety of young animals. An iron ensures the normal activity of enzymes and the course of metabolic reactions, which is manifested by the effect on the organs of the respiratory, circulatory and immune systems. Insufficient iron content in the diet can lead to anemia. There are two types of iron: containing a coloring substance - "heme" and not containing "heme". The first enters living organisms from protein food and is digested much better than iron without "heme". Not containing "heme" is the main group of iron in plants. Iron is absorbed by mature enterocytes of the middle upper villi and, mainly, by the small intestine. Iron in the form of nanoparticles in the intestine is absorbed as part of a complex aggregate - ferritin of plant origin through endocytosis. This complex aggregate may include several thousand iron atoms, which reduces resorption in the intestine. For polyhastric animals it activate microbiological processes in the rumen, which is expressed in an increase in the concentration of ammonia, as well as a widespread decrease in the acid-base balance of the scar fluid in the control group to 6,7-6,9. Most bacteria require iron for growth and survival. It regulates bacterial survival by modulating several key metabolic pathways, including riboflavin biosynthesis, antioxidant enzyme function, anaerobic respiration, butyrate production, and virulence of pathogenic bacteria. Indicating that iron availability is tightly regulated in the intestine and its homeostasis plays a crucial role in maintaining a healthy microbiota. So it is important to make allowance about iron importance in coordination complex when studying the diet of farm animals.
Keywords: polyhastric animals, feeding, digestion, enzymes, iron, nanoparticles, microbiota, ferroportin, transferrin, hemochromatosis
Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2023 FSBRI FRC BST RAS (No. 0761-2019-0005).
For citation: Shoshina OV, Lebedev SV, Sheyda EV. The role of iron in digestion in polygastric animals (review). Animal Husbandry and Fodder Production. 2021;104(4):170-181. (In Russ.). https://doi.org/10.33284/2658-3135-104-4-170
References
- Sizova EA, Lebedev SV, Sipailova OYu, Nesterov DV. The influence of sulphates and iron nanoparticles on features of exchange of chemical elements in muscle tissue. Scientific Notes Kazan Bauman State Academy of Veterinary Medicine. 2014;217(1):251-255.
- Sheyda EV, Lebedev SV, Miroshnikov SA, Grechkina VV, Levakhin GI. Influence of ultrafine Fe on biochemical status of organism and exocrine activity of pancreas against the background of feeding with protein diets in raising cattle. Animal Husbandry and Fodder Production. 2020;103(3):190-203. doi: 10.33284/2658-3135-103-3-190
- Kokoeva AT, Kokoeva AlT, Nogayeva VV. Technological bases of beef production with the use of nanopowder iron. (Conference proceedings) Prospects for the production of food products of a new generation: materials All-Russian. scientific-practical conf. with int. participation (Omsk, 13-14 April. 2017). Omsk: Omsk SAU name Stolypina PA; 2017:69-72.
- Komleva NA. Ferrum: its role in food-producing animals’ feeding, asiderosis’ prophylaxis. Scientific electronic journal «Meridian». 2021;1(54):171-173.
- Korotkova AM, Kvan OV, Vershinina IA, Lebedev SV. Microbiological aspects of the effect of FE NPs on Wistar rats. Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(3):168-173. doi: 10.20914/2310-1202-2019-3-168-173
- Miroshnikov IS. Influence of metal nanoparticles on ruminal digestion and metabolism of chemical elements in system “bacteria-protozoa” of rumen. Herald of Beef Cattle Breeding. 2017;1(97):68-77.
- Morshchakova EF, Pavlov АD. Regulation of iron hemost asis. Hematology and Transfusiology. 2003;48(1):36-38.
- Vatutin NT, Kalinkina NV, Smirnova AS, Kashanskaya OK, Milner IA. The role of iron in the human organism. The Journal of VN Karazіn Kharkiv National University. Series Medisine. 2012;1024:74-80.
- Ajay CM, Mohan S, Dinesha P, Rosen MA. Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel. 2020;277:118234. doi: 10.1016/j.fuel.2020.118234
- Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106(Suppl 6):1559S-1566S. https://doi.org/10.3945/ajcn.117.155804
- Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986-1995. doi: 10.1056/NEJM199912233412607
- Anjem A, Imlay JA. Mononuclear iron enzymes are primary targets of hydrogenperoxide stress. J Biol Chem. 2012;287(19):15544-15556. doi: 10.1074/jbc.M111.330365
- Bering S, Suchdev S, Sjoltov L, Berggren A, Tetens I, Bukhave K. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-richmeal in healthy women of childbearing age. Br J Nutr. 2006;96(1):80-85. doi: 10.1079/bjn20061683
- Bomford A. Genetics of haemochromatosis. Lancet. 2002.360(9346):1673-1681. doi: 10.1016/S0140-6736(02)11607-2
- Boyer E, Bergevin I, Malo D, Gros P, Cellier MF. Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun. 2002;70(11):6032-6042. doi: 10.1128/IAI.70.11.6032-6042.2002
- Carpenter CE, Mahoney AW. Contributions of heme and nonheme iron to human nutrition. Crit Rev Food Sci Nutr. 1992;31(4):333-367. doi: 10.1080/10408399209527576
- Chua K, Fung E, Micewicz ED, Ganz T, Nemeth E, Ruchala P. Small cyclic agonists of iron regulatory hormone hepcidin. Bioorg Med Chem Lett. 2015;25(21):4961-4969. doi: 10.1016/j.bmcl.2015.03.012
- Conrad ME, Umbreit JN. A concise review: iron absorption - the mucin-mobilferrin-integrin pathway. A competitive pathway for metal absorption. Am J Hematol. 1993;42(1):67-73. doi: 10.1002/ajh.2830420114
- Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. Focused Review. Journal of Inorganic Biochemistry. 2002;91(1):9-18. doi: 10.1016/s0162-0134(02)00461-0
- Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1(3):191-200. doi: 10.1016/j.cmet.2005.01.003
- Dostal A, Lacroix C, Bircher L, Pham VT, Follador R, Zimmermann MB, Chassard C. Iron modulates butyrate production by a child gut microbiota in vitro. mBio. 2015;6(6):e01453-15. doi: 10.1128/mBio.01453-15
- Ezealigo US, Ezealigo BN, Aisida SO, Ezema FI. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open. 2021;4:100027. doi: 10.1016/j.jciso.2021.100027
- Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamamoto Y, Iwasaki M, Yamashiro T, Umetsu K. Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles. Waste Manag. 2020;101:141-149. doi: 10.1016/j.wasman.2019.10.003
- Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad.Sci. 1998;95(3):1148-1153. doi: 10.1073/pnas.95.3.1148
- Fleming RE, Sly WS. Mechanisms of iron accumulation in hereditary hemochromatosis. Annual Review of Physiology. 2002;64:663-680. doi: 10.1146/annurev.physiol.64.081501.155838
- Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol. 2012;26(2-3):115-119. doi: 10.1016/j.jtemb.2012.03.015
- Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest. 2005;115(5):1258-1266. doi: 10.1172/JCI24356
- Han YM, Yoon H, Lim S, Sung MK, Shin CM, Park YS, Kim N, Lee DH, Kim JS. Risk factors for Vitamin D, zinc, and selenium deficiencies in Korean patients with inflammatory bowel disease. Gut Liver. 2017;11(3):363-369.doi: 10.5009/gnl16333
- Higashimura Y, Takagi T, Naito Y, Uchiyama K, Mizushima K, Tanaka M, Hamaguchi M, Itoh Y. Zinc deficiency activates the IL-23/Th17 Axis to aggravate experimental colitis in mice. J Crohns Colitis. 2020;14(6):856-866.doi: 10.1093/ecco-jcc/jjz193
- Hoppe M, Onning G, Berggren A, Hulthen L. Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: A double-isotope cross-over single-blind study in women of reproductive age. Br J Nutr. 2015;114(8):1195-1202. doi: 10.1017/S000711451500241X
- Jadhav P, Khalid ZB, Zularisam AW, Krishnan S, Nasrullah M. The role of iron-based nanoparticles (Fe-NPs) on methanogenesis in anaerobic digestion (AD) performance. Environmental Research. 2022;204(B):112043. doi: 10.1016/j.envres.2021.112043
- Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, Boekhorst J, Timmerman HM, Swinkels DW, Tjalsma H, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64:731-742. doi: 10.1136/gutjnl-2014-307720
- Jiang L, Dong Y, Yuan Y, Zhou X, Liu Y, Meng X. Recent advances of metal-organic frameworks in corrosion protection: from synthesis to applications. Chemical Engineering Journal. 2021:1-66. doi: 10.1016/j.cej.2021.132823
- Kianpour S, Ebrahiminezhad A, Negahdaripour M, Mohkam M, Mohammadi F, Niknezhad SV, Ghasemi Y. Characterization of biogenic Fe (III)-binding exopolysaccharide nanoparticles produced by Ralstonia sp. SK03. Biotechnol Prog. 2018;34(5):1167-1176. doi: 10.1002/btpr.2660
- Laparra JM, Glahn RP, Miller DD. Assessing potential effects of inulin and probioticbacteria on Fe availability from common beans (Phaseolus vulgaris L.) to Caco-2cells. J Food Sci. 2009;74(2):H40-H46. doi: 10.1111/j.1750-3841.2008.01027.x
- Liu J, Vipulanandan C. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3909-3915. doi: 10.1016/j.msec.2013.05.026
- Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. The Lancet. 2016;387(10021):907-916. doi: 10.1016/S0140-6736(15)60865-0
- McKie AT, Barrow D, Launde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Si,mpson RJ. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science. 2001;291:1755-1759. doi: 10.1126/science.1057206
- Miao J, Liao W, Pan Z, Wang Q, Duan S, Xiao S, Yang Z, Cao Y. Isolation and identification of iron-chelating peptides from casein hydrolysates. Food Funct. 2019;10(5):2372-2381. doi: 10.1039/c8fo02414f
- Ngueagni PT, Kumar PS, Woumfo ED, Abilarasu A, Joshiba GJ, Femina Carolin C, Prasannamedha G, Fotsing PN, Siewe M. Effectiveness of a biogenic composite derived from cattle horn core/iron nanoparticles via wet chemical impregnation for cadmium (II) removal in aqueous solution. Chemosphere. 2021;272:129806. doi: 10.1016/j.chemosphere.2021.129806
- Pajarillo EAB, Lee E, Kang D-K. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Animal Nutrition. 2021;7(3):750-761. doi: 10.1016/j.aninu.2021.03.005
- Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. The Lancet. 2021;397(10270):233-248. doi: 10.1016/S0140-6736(20)32594-0
- Pietrangelo A. Physiology of iron transport and the hemochromatosis gene. Am J Physiol., 2002;282(3):G403-G414. doi: 10.1152/ajpgi.00404.2001
- Rehman AU, NazirS,IrshadR,TahirK,RehmanK, UlIslamR,Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. Journal of Molecular Liquids. 2021;321:114455. doi: 10.1016/j.molliq.2020.114455
- Saha P, Yeoh BS, Singh R, Chandrasekar B, Vemula PK, Haribabu B, Vijay-Kumar M, Jala VR. Gut microbiota conversion of dietary ellagic acid into bioactive phy-toceutical urolithin A inhibits heme peroxidases. PloS One. 2016;11(6):e0156811.doi: 10.1371/journal.pone.0156811
- Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22:1079-1089. doi: 10.1038/nm.4185
- Schüemann K, Elsenhans B, Forth W. Kinetic analysis of 59Fe movement across the intestinal wall in duodenal rat segments ex vivo. Am J Physiol. 1999;276(2):431-440. doi: 10.1152/ajpgi.1999.276.2.G431
- Suttle N. Ruminant nutrition – digestion and absorption of minerals and vitamins. Reference Module in Food Science.2016. doi: 10.1016/B978-0-08-100596-5.00964-1
- Talankova-Sereda TE, Lyapina KV, Shkopinsky EA, Ustinov AI, et al. Influence of cu and Co nanoparticles on growth characteristics and biochemical structure of Mentha longifolia in vitro. In: Fesenko O, Yatsenko L, editors. Nanophysics, nanophotonics, surface studies and applications. Springer Proceedings in Physics. Springer, Cham. 2016;183:427-436. doi: 10.1007/978-3-319-30737-4_36
- Takehiko T, Rabindra KB, Elizabeth CT. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites. Inorg Chem. 2012;51(21):11406-11. doi: 10.1021/ic3010135. Epub 2012 Oct 23
- Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I. Contribution of TonB- and Feo- mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 1996;64(11):4549e56. doi: 10.1128/IAI.64.11.4549-4556.1996
- Vega-Bautista A, de la Garza M, Carrero JC, Campos-Rodriguez R, Godinez-Victoria M, Drago-Serrano ME. The impact of lactoferrin on the growth of in-testinal inhabitant bacteria. Int J Mol Sci. 2019;20(19):4707. doi: 10.3390/ijms20194707
- Zimmermann MB, Chassard C, Rohner F, N'Goran EK, Nindjin C, Dostal A, Utzinger J, Ghattas H, Lacroix C, Hurrell RF. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire. Am J Clin Nutr. 2010;92(6):1406-1415. doi: 10.3945/ajcn.110.004564
- Zoller H, Weiss G, Theurl I, Koch RO, Vogel W, Obrist P, Pietranglo A, Montosi G, Haile DJ. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology. 2001;120(6):1412-1419. doi: 10.1053/gast.2001.24033
Information about the authors:
Oksana V Shoshina, 2st year postgraduate student, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, 29, 9 Yanvarya St., tel.: 8-987-891-96-55.
Svyatoslav V Lebedev, Dr. Sci. (Biology), Leading Researcher, Biological Tests and Examinations, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, 29, 9 Yanvarya St., tel.: 8-912-345-87-38.
Elena V Sheyda, Cand. Sci (Biology), Researcher, Biological Tests and Examinations, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, 29, 9 Yanvarya St., tel.: 8-922-862-64-02.
The article was submitted 26.10.2021; approved after reviewing 15.11.2021; accepted for publication 13.12.2021.
Download