Oksana V Shoshina, Svyatoslav V Lebedev, Elena V Sheyda

Animal Husbandry and Fodder Production. 2021. Vol. 104, no 4. Р. 170-181.

doi:10.33284/2658-3135-104-4-170

 The role of iron in digestion in polygastric animals (review)

 Oksana V Shoshina, Svyatoslav V Lebedev, Elena V Sheyda

1,2,3Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1oksana.shoshina.98@mail.ru, https://orcid.org/0000-0003-4104-3333

2lsv74@list.ru, https://orcid.org/0000-0001-9485-7010

3elena-snejjda@mail.ru, https://orcid.org/0000-0002-2586-613X

 Abstract. Iron is one of the most important metals in the animal body, which is contained in animals and plants tissues. Iron proteins perform various functions in the body: hemoglobin carries oxygen to tissues and organs, myoglobin binds and reserves oxygen. Cytochromes, cytochrome oxidases, catalases and peroxidases are enzymes responsible for the growth of live weight and the safety of young animals. An iron ensures the normal activity of enzymes and the course of metabolic reactions, which is manifested by the effect on the organs of the respiratory, circulatory and immune systems. Insufficient iron content in the diet can lead to anemia. There are two types of iron: containing a coloring substance - "heme" and not containing "heme". The first enters living organisms from protein food and is digested much better than iron without "heme". Not containing "heme" is the main group of iron in plants. Iron is absorbed by mature enterocytes of the middle upper villi and, mainly, by the small intestine. Iron in the form of nanoparticles in the intestine is absorbed as part of a complex aggregate - ferritin of plant origin through endocytosis. This complex aggregate may include several thousand iron atoms, which reduces resorption in the intestine. For polyhastric animals it activate microbiological processes in the rumen, which is expressed in an increase in the concentration of ammonia, as well as a widespread decrease in the acid-base balance of the scar fluid in the control group to 6,7-6,9. Most bacteria require iron for growth and survival. It regulates bacterial survival by modulating several key metabolic pathways, including riboflavin biosynthesis, antioxidant enzyme function, anaerobic respiration, butyrate production, and virulence of pathogenic bacteria. Indicating that iron availability is tightly regulated in the intestine and its homeostasis plays a crucial role in maintaining a healthy microbiota. So it is important to make allowance about iron importance in coordination complex when studying the diet of farm animals.

Keywords: polyhastric animals, feeding, digestion, enzymes, iron, nanoparticles, microbiota, ferroportin, transferrin, hemochromatosis

Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2023 FSBRI FRC BST RAS (No. 0761-2019-0005).

For citation: Shoshina OV, Lebedev SV, Sheyda EV. The role of iron in digestion in polygastric animals (review). Animal Husbandry and Fodder Production. 2021;104(4):170-181. (In Russ.). https://doi.org/10.33284/2658-3135-104-4-170

References

  1. Sizova EA, Lebedev SV, Sipailova OYu, Nesterov DV. The influence of sulphates and iron nanoparticles on features of exchange of chemical elements in muscle tissue. Scientific Notes Kazan Bauman State Academy of Veterinary Medicine. 2014;217(1):251-255.
  2. Sheyda EV, Lebedev SV, Miroshnikov SA, Grechkina VV, Levakhin GI. Influence of ultrafine Fe on biochemical status of organism and exocrine activity of pancreas against the background of feeding with protein diets in raising cattle. Animal Husbandry and Fodder Production. 2020;103(3):190-203. doi: 10.33284/2658-3135-103-3-190
  3. Kokoeva AT, Kokoeva AlT, Nogayeva VV. Technological bases of beef production with the use of nanopowder iron. (Conference proceedings) Prospects for the production of food products of a new generation: materials All-Russian. scientific-practical conf. with int. participation (Omsk, 13-14 April. 2017). Omsk: Omsk SAU name Stolypina PA; 2017:69-72.
  4. Komleva NA. Ferrum: its role in food-producing animals’ feeding, asiderosis’ prophylaxis. Scientific electronic journal «Meridian». 2021;1(54):171-173.
  5. Korotkova AM, Kvan OV, Vershinina IA, Lebedev SV. Microbiological aspects of the effect of FE NPs on Wistar rats. Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(3):168-173. doi: 10.20914/2310-1202-2019-3-168-173
  6. Miroshnikov IS. Influence of metal nanoparticles on ruminal digestion and metabolism of chemical elements in system “bacteria-protozoa” of rumen. Herald of Beef Cattle Breeding. 2017;1(97):68-77.
  7. Morshchakova EF, Pavlov АD. Regulation of iron hemost asis. Hematology and Transfusiology. 2003;48(1):36-38.
  8. Vatutin NT, Kalinkina NV, Smirnova AS, Kashanskaya OK, Milner IA. The role of iron in the human organism. The Journal of VN Karazіn Kharkiv National University. Series Medisine. 2012;1024:74-80.
  9. Ajay CM, Mohan S, Dinesha P, Rosen MA. Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel. 2020;277:118234. doi: 10.1016/j.fuel.2020.118234
  10. Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106(Suppl 6):1559S-1566S. https://doi.org/10.3945/ajcn.117.155804
  11. Andrews NC. Disorders of  iron  metabolism. N  Engl  J  Med. 1999;341(26):1986-1995.  doi: 10.1056/NEJM199912233412607
  12. Anjem A, Imlay JA. Mononuclear iron enzymes are primary targets of hydrogenperoxide stress. J Biol Chem. 2012;287(19):15544-15556. doi: 10.1074/jbc.M111.330365
  13. Bering S, Suchdev S, Sjoltov L, Berggren A, Tetens I, Bukhave K. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-richmeal in healthy women of childbearing age. Br J Nutr. 2006;96(1):80-85. doi: 10.1079/bjn20061683
  14. Bomford A. Genetics of  haemochromatosis.  Lancet.  2002.360(9346):1673-1681.  doi: 10.1016/S0140-6736(02)11607-2
  15. Boyer E, Bergevin I, Malo D, Gros P, Cellier MF. Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun. 2002;70(11):6032-6042. doi: 10.1128/IAI.70.11.6032-6042.2002
  16. Carpenter CE, Mahoney AW. Contributions of heme and nonheme iron to human nutrition. Crit Rev Food Sci Nutr. 1992;31(4):333-367. doi: 10.1080/10408399209527576
  17. Chua K, Fung E, Micewicz ED, Ganz T, Nemeth E, Ruchala P. Small cyclic agonists  of iron regulatory hormone hepcidin. Bioorg Med Chem Lett. 2015;25(21):4961-4969. doi: 10.1016/j.bmcl.2015.03.012
  18. Conrad ME, Umbreit JN. A  concise  review:  iron  absorption - the  mucin-mobilferrin-integrin  pathway.  A  competitive  pathway  for  metal  absorption.  Am J Hematol. 1993;42(1):67-73. doi: 10.1002/ajh.2830420114
  19. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and  cellular  mechanisms  of iron homeostasis and toxicity in mammalian  cells.  Focused  Review. Journal  of  Inorganic  Biochemistry. 2002;91(1):9-18. doi: 10.1016/s0162-0134(02)00461-0
  20. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC. The iron  exporter  ferroportin/Slc40a1  is  essential  for  iron  homeostasis. Cell Metab. 2005;1(3):191-200. doi: 10.1016/j.cmet.2005.01.003
  21. Dostal A, Lacroix C, Bircher L,  Pham VT,  Follador R,  Zimmermann MB,  Chassard C. Iron  modulates  butyrate  production  by  a  child gut microbiota in vitro. mBio. 2015;6(6):e01453-15. doi: 10.1128/mBio.01453-15
  22. Ezealigo US, Ezealigo BN, Aisida SO, Ezema FI. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open. 2021;4:100027. doi: 10.1016/j.jciso.2021.100027
  23. Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamamoto Y, Iwasaki M, Yamashiro T, Umetsu K. Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles. Waste Manag. 2020;101:141-149. doi: 10.1016/j.wasman.2019.10.003
  24. Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad.Sci. 1998;95(3):1148-1153. doi: 10.1073/pnas.95.3.1148
  25. Fleming RE, Sly WS. Mechanisms of iron accumulation in hereditary hemochromatosis. Annual Review of Physiology. 2002;64:663-680. doi: 10.1146/annurev.physiol.64.081501.155838
  26. Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol. 2012;26(2-3):115-119. doi: 10.1016/j.jtemb.2012.03.015
  27. Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest. 2005;115(5):1258-1266. doi: 10.1172/JCI24356
  28. Han YM, Yoon H, Lim S, Sung MK, Shin CM, Park YS, Kim N, Lee DH, Kim JS. Risk factors for Vitamin D, zinc, and selenium deficiencies in Korean patients with inflammatory bowel disease. Gut Liver. 2017;11(3):363-369.doi: 10.5009/gnl16333
  29. Higashimura Y, Takagi T, Naito Y, Uchiyama K, Mizushima K, Tanaka M, Hamaguchi M, Itoh Y. Zinc deficiency activates the IL-23/Th17 Axis to aggravate experimental colitis in mice. J Crohns Colitis. 2020;14(6):856-866.doi: 10.1093/ecco-jcc/jjz193
  30. Hoppe M, Onning G, Berggren A, Hulthen L. Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: A double-isotope cross-over single-blind study in women of reproductive age. Br J Nutr. 2015;114(8):1195-1202. doi: 10.1017/S000711451500241X
  31. Jadhav P, Khalid ZB, Zularisam AW, Krishnan S, Nasrullah M. The role of iron-based nanoparticles (Fe-NPs) on methanogenesis in anaerobic digestion (AD) performance. Environmental Research. 2022;204(B):112043. doi: 10.1016/j.envres.2021.112043
  32. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, Boekhorst J, Timmerman HM, Swinkels DW, Tjalsma H, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64:731-742. doi: 10.1136/gutjnl-2014-307720
  33. Jiang L, Dong Y, Yuan Y, Zhou X, Liu Y, Meng X. Recent advances of metal-organic frameworks in corrosion protection: from synthesis to applications. Chemical Engineering Journal. 2021:1-66. doi: 10.1016/j.cej.2021.132823
  34. Kianpour S, Ebrahiminezhad A, Negahdaripour M, Mohkam M, Mohammadi F, Niknezhad SV, Ghasemi Y. Characterization of biogenic Fe (III)-binding exopolysaccharide nanoparticles produced by Ralstonia sp. SK03. Biotechnol Prog. 2018;34(5):1167-1176. doi: 10.1002/btpr.2660
  35. Laparra JM, Glahn RP, Miller DD. Assessing potential effects of inulin and probioticbacteria on Fe availability from common beans (Phaseolus vulgaris L.) to Caco-2cells. J Food Sci. 2009;74(2):H40-H46. doi: 10.1111/j.1750-3841.2008.01027.x
  36. Liu J, Vipulanandan C. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3909-3915. doi: 10.1016/j.msec.2013.05.026
  37. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. The Lancet. 2016;387(10021):907-916. doi: 10.1016/S0140-6736(15)60865-0
  38. McKie AT, Barrow D, Launde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Si,mpson RJ. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science. 2001;291:1755-1759. doi: 10.1126/science.1057206
  39. Miao J, Liao W, Pan Z, Wang Q, Duan S, Xiao S, Yang Z, Cao Y. Isolation and identification of iron-chelating peptides from casein hydrolysates. Food Funct. 2019;10(5):2372-2381. doi: 10.1039/c8fo02414f
  40. Ngueagni PT, Kumar PS, Woumfo ED, Abilarasu A, Joshiba GJ, Femina Carolin C, Prasannamedha G, Fotsing PN, Siewe M. Effectiveness of a biogenic composite derived from cattle horn core/iron nanoparticles via wet chemical impregnation for cadmium (II) removal in aqueous solution. Chemosphere. 2021;272:129806. doi: 10.1016/j.chemosphere.2021.129806
  41. Pajarillo EAB, Lee E, Kang D-K. Trace metals  and  animal  health:  Interplay  of  the gut microbiota with iron, manganese, zinc, and copper. Animal Nutrition. 2021;7(3):750-761. doi: 10.1016/j.aninu.2021.03.005
  42. Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. The Lancet. 2021;397(10270):233-248. doi: 10.1016/S0140-6736(20)32594-0
  43. Pietrangelo A. Physiology of iron transport and the hemochromatosis gene. Am J Physiol., 2002;282(3):G403-G414. doi: 10.1152/ajpgi.00404.2001
  44. Rehman AU, NazirS,IrshadR,TahirK,RehmanK, UlIslamR,Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. Journal of Molecular Liquids. 2021;321:114455. doi: 10.1016/j.molliq.2020.114455
  45. Saha P, Yeoh BS, Singh R,  Chandrasekar B,  Vemula PK,  Haribabu B, Vijay-Kumar M, Jala VR. Gut microbiota conversion of dietary ellagic acid into bioactive phy-toceutical urolithin A inhibits heme peroxidases. PloS One. 2016;11(6):e0156811.doi: 10.1371/journal.pone.0156811
  46. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22:1079-1089. doi: 10.1038/nm.4185
  47. Schüemann K, Elsenhans B, Forth W. Kinetic analysis of 59Fe movement across the intestinal wall in duodenal rat segments ex vivo. Am J Physiol. 1999;276(2):431-440. doi: 10.1152/ajpgi.1999.276.2.G431
  48. Suttle N. Ruminant nutrition – digestion and absorption of minerals and vitamins. Reference Module in Food Science.2016. doi: 10.1016/B978-0-08-100596-5.00964-1
  49. Talankova-Sereda TE, Lyapina KV, Shkopinsky EA, Ustinov AI, et al. Influence of cu and Co nanoparticles on growth characteristics and biochemical structure of Mentha longifolia in vitro. In: Fesenko O, Yatsenko L, editors. Nanophysics, nanophotonics, surface studies and applications. Springer Proceedings in Physics. Springer, Cham. 2016;183:427-436. doi: 10.1007/978-3-319-30737-4_36
  50. Takehiko T, Rabindra KB, Elizabeth CT. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites. Inorg Chem. 2012;51(21):11406-11. doi: 10.1021/ic3010135. Epub 2012 Oct 23
  51. Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I. Contribution of TonB- and Feo- mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 1996;64(11):4549e56. doi: 10.1128/IAI.64.11.4549-4556.1996
  52. Vega-Bautista A, de la Garza M, Carrero JC, Campos-Rodriguez R, Godinez-Victoria M, Drago-Serrano ME. The impact of lactoferrin on the growth of in-testinal inhabitant bacteria. Int J Mol Sci. 2019;20(19):4707. doi: 10.3390/ijms20194707
  53. Zimmermann MB, Chassard C, Rohner F,  N'Goran EK,  Nindjin C,  Dostal A,  Utzinger J, Ghattas H,  Lacroix C,  Hurrell RF.  The  effects  of  iron  fortification  on  the  gut  microbiota  in  African  children:  a  randomized  controlled trial in Cote d'Ivoire. Am J Clin Nutr. 2010;92(6):1406-1415. doi: 10.3945/ajcn.110.004564
  54. Zoller H, Weiss G, Theurl I, Koch RO, Vogel W, Obrist P, Pietranglo A, Montosi G, Haile DJ. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology. 2001;120(6):1412-1419. doi: 10.1053/gast.2001.24033

Information about the authors:

Oksana V Shoshina, 2st year postgraduate student, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, 29, 9 Yanvarya St., tel.: 8-987-891-96-55.

Svyatoslav V Lebedev, Dr. Sci. (Biology), Leading Researcher, Biological Tests and Examinations, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, 29, 9 Yanvarya St.,  tel.: 8-912-345-87-38.

Elena V Sheyda, Cand. Sci (Biology), Researcher, Biological Tests and Examinations, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, 29, 9 Yanvarya St., tel.: 8-922-862-64-02.

The article was submitted 26.10.2021; approved after reviewing 15.11.2021; accepted for publication 13.12.2021.

Download