Oleg Zavyalov

Elemental status and its changes in relation to the boundaries of the

“physiological standard” in cows of the Holstein breed of different lactations

DOI: 10.33284/2658-3135-103-1-65

UDC 636.085:577.17

Acknowledgements:

Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0761-2019-0001)

Elemental status and its changes in relation to the boundaries of the

“physiological standard” in cows of the Holstein breed of different lactations

Oleg A Zavyalov

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. The paper presents data on the assessment of fluctuations in the exchange pools of chemical elements in the wool of Holstein cows in relation to the boundaries of the “physiological standard” in the context of lactations. The object of the study was Holstein cows of I, II, III and IV lactations. Wool was used as a biosubstrate to assess elemental status, which was selected from the upper part of the withers of cows during the milking period (20–40 days). Elemental analysis of samples was evaluated by AES-ICP and MS-ICP methods. As a result of the experiment, it was found that cows of I lactation showed minimal concentrations of a number of toxic elements (As, Hg, Cd, Sr). Animal IV lactations were ahead of animals I lactation in terms of accumulation of Zn in wool (P≤0.01), while they were inferior in accumulation of Cu (P≤0.05). The calculation of the Spearman’s correlation coefficients of the sum of toxic elements (As, Hg, Sr, Cd) with the concentrations of essential elements revealed a positive correlation for Mn (r = 0.49) and Se (r = 0.68), a negative correlation for Cu (r = -0.57) and Zn (r = -0.56). Interpretation of the elemental status of cows with respect to the boundaries of the “physiological standard” revealed an increase in the number of deviations from the standard as the duration of productive use increased from two to eleven.

Key words: cows, Holstein breed, elemental status, hair, age, productive use.

References

  1. Skalnaya MG, Demidov VA, Skalny AV. About the limits of physiological (normal) content of Са, Mg, Р, Fe, Zn and Cu in human hair. Trace Elements in Medicine. 2003;4(2):5-10.
  2. Alonso ML, Benedito JL, Miranda M, Castillo C, Hernández J, Shore RF. Mercury concentrations in cattle  from  NW  Spain.  Science  of  the  Total  Environment.  2003;302(1-3):93-100. doi: https://doi.org/10.1016/S0048-9697(02)00345-5
  3. Barysheva ES. Experimental simulation of the effects of essential and toxic trace elements on thyroid function. Bulletin of Experimental Biology and Medicine. 2018;164(4):439-441. doi: https://doi.org/10.1007/s10517-018-4007-z.
  4. Bremner BI, Beattie JH. Copper and zinc metabolism in health and disease: speciation and interaction. Proceedings of the Nutrition Society. 1995;54(2):489-499. doi: https://doi.org/10.1079/PNS19950017
  5. Chung SM, Moon JS, Yoon JS, Won KC, Lee HW. Sex-specific effects of blood cadmium on thyroid hormones and thyroid function status: Korean nationwide cross-sectional study. Journal of Trace Elements in Medicine and Biology. 2019;53:55-61. doi: https://doi.org/10.1016/j.jtemb.2019.02.003
  6. Cygan-Szczegielniak D, Stanek M, Giernatowska E, Janicki B. Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows. Folia Biol (Krakow). 2014;62(3):163-169.
  7. Długaszek M, Kopczyński K. Correlations between elements in the fur of wild animals. Bulletin of Environmental Contamination and Toxicology. 2014;93(1):25-30. doi: https://doi.org/10.1007/s00128-014-1260-3.
  8. Donat K, Siebert W, Menzer E, Söllner-Donat S. Long-term trends in the metabolic profile test results in German Holstein dairy herds in Thuringia, Germany. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2016;44(2):73-82. doi: 10.15653/TPG-150948.
  9. Guyot H, Rollin F. The diagnosis of selenium and iodine deficiencies in cattle. Ann Med Vet. 2007;151:166-191.
  10. Hansen SL, Ashwell MS, Moeser AJ, Fry RS, Knutson MD, Spears JW. High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. Journal of Dairy Science. 2010;93(2):656-665. doi: https://doi.org/10.3168/jds.2009-2341
  11. Hong SR, Lee SM, Lim NR, Chung HW, Ahn HS. Association between hair mineral and age, BMI and nutrient intakes among Korean female adults. Nutrition Research and Practice. 2009;3(3):212-219. http://dx.doi.org/10.4162/nrp.2009.3.3.212
  12. Jancic SA, Stosic BZ. Chapter Fourteen – Cadmium effects on the thyroid gland. Vitamins & Hormones. 2014;94:391-425. doi: https://doi.org/10.1016/B978-0-12-800095-3.00014-6
  13. Kalashnikov V, Zajcev A, Atroshchenko M, Miroshnikov S, Frolov A. Zav’yalov O, Kalinkova L, Kalashnikova T. The content of essential and toxic elements in the hair of the mane of the trotter horses depending on their speed. Environmental Science and Pollution Research. 2018;25(22):21961-21967. doi: https://doi.org/10.1007/s11356-018-2334-2
  14. Khalique A, Ahmad S, Anjum T, Jaffar M, Shah MH, Shaheen N, Tariq SR, Manzoor S. A comparative study based on gender and age dependence of selected metals in scalp hair. Environmental Monitoring and Assessment. 2005;104(1):45-57. doi: http://dx.doi.org/10.1007/s10661-005-8813-1
  15. Miroshnikov S, Kharlamov A, Zavyalov O, Frolov A, Bolodurina I, Arapova O, Duskaev G. Method of sampling beef cattle hair for assessment of elemental profile. Pakistan Journal of Nutrition. 2015;14(9):632-636. doi: 10.3923/pjn.2015.632.636
  16. Miroshnikov SA, Skalny AV, Zavyalov OA, Frolov AN, Grabeklis AR. The reference values of hair content of trace elements in dairy cows of Holstein Breed. Biological Trace Element Research. 2020;194(1):145-151. doi: 10.1007/s12011-019-01768-6
  17. Miroshnikov SA, Zavyalov OA, Frolov AN, Bolodurina IP, Kalashnikov VV, Grabeklis AR, Tinkov AA, Skalny AV. The reference intervals of hair trace element content in Hereford Cows and Heifers (Bos taurus). Biological Trace Element Research. 2017;180(1):56-62. doi: 10.1007/s12011-017-0991-5
  18. Mittag J, Behrends T, Hoefig CS, Vennström B, Schomburg L. Thyroid hormones regulate selenoprotein expression and selenium status in mice. PLoS ONE. 2010;5(9):е12931. doi: https://doi.org/10.1371/journal.pone.0012931
  19. Pieper L, Schmidt F, Müller AE, Staufenbiel R. Zinc concentrations in different sample media from dairy cows and establishment of reference values. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2017;45(4):213-218. doi: 10.15653/TPG-160741
  20. Raikwar MK, Kumar P, Singh M, Singh A. Toxic effect of heavy metals in livestock health. Veterinary World. 2008;1(1):28-30. doi: 10.5455/vetworld.2008.28-30
  21. Schild CO, Giannitti F, Medeiros RMT, da Silva Silveira C, Caffarena RD, Poppenga RH, Riet-Correa F. Acute lead arsenate poisoning in beef cattle in Uruguay. Journal of Veterinary Diagnostic Investigation. 2019;31(2):307-310. doi: 10.1177/1040638719831413
  22. Siwińska N, Żak A, Słowikowska M, Kubiak K, Jaworski Z, Niedzwiedź A. Morphology and elemental analysis of free range and stabled Polish Konik horses hair using Energy-dispersive X-ray spectroscopy (EDS). Polish Journal of Veterinary Sciences. 2018;21(1):65-72. doi: 10.24425/119023
  23. Skalnaya MG, Tinkov AA, Demidov VA, Serebryansky EP, Nikonorov AA, Skalny AV. Age-related differences in hair trace elements: a crosssectional study in Orenburg, Russia. Annals of Human Biology. 2016;43(5):438-444. doi: http://dx.doi.org/10.3109/03014460.2015.1071424
  24. Skalny AV, Skalnaya MG, Grabeklis AR, Skalnaya AA, Tinkov AA. Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr. 2018;57(7):2313-2322. doi: 10.1007/s00394-017-1584-y
  25. Tangpong J, Satarug S Alleviation of lead poisoning in the brain with aqueous leaf extract of the Thunbergia laurifolia (Linn.). Toxicology Letters. 2010;198(1):83-88. doi: https://doi.org/10.1016/j.toxlet.2010.04.031
  26. Wang H, Jiang Y, Tian C, Pan R, Dang F, Feng J, Li M, Zhang Y, Li H, Man C. Determination of the transfer of lead and chromium from feed to raw milk in Holstein cows. Food Additives & Contaminants Part A. 2018;35(10):1990-1999. doi: 10.1080/19440049.2018.1496279
  27. Zhao XJ, Wang XY, Wang JH, Wang ZY, Wang L, Wang ZH. Oxidative stress and imbalance of mineral metabolism contribute to lameness in dairy cows. Biol Trace Elem Res. 2015;164(1):43-49. doi: 10.1007/s12011-014-0207-1

Zavyalov Oleg Alexandrovich, Cand. Sci. (Agr.), Senior Researcher, Department of Technology of Beef Cattle Breeding and Beef Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-78, e-mail: oleg-zavyalov83@mail.ru

Received: 10 March 2020; Accepted: 16 March 2020; Published: 31 March 2020

Download