Svetlana Notovа, Tatyana Kazakova, Olga Marshinskaia

Study of chemical forms of copper and manganese in a living body (review)

DOI: 10.33284/2658-3135-103-1-47

UDC 577.17

Acknowledgements:

Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0761-2019-0001)

Study of chemical forms of copper and manganese in a living body (review)

Svetlana V Notovа, Tatyana V Kazakova, Olga V Marshinskaia

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. Elemental analysis is an integral part of many studies and allows us to study the content of elements, including metals and metal-containing compounds in biosubstrates. In the last decade, a new integrative direction of the study of elemental status has appeared – metallomics. This branch of science is engaged in the analysis of metal, that is, the interaction and functioning of various types of metals with genes, proteins, metabolites and other molecules in biological systems, so it can be defined as biochemistry of metal-dependent functions. The establishment of standard of the concentration of metal ions in tissues and cells is equally important. Metallomics methods are used in chemistry, physics, biology, medicine, pharmacology, agricultural sciences, bioenergy, botany, toxicology, molecular biology, microbiology and a number of other sciences. Despite the large number of studies in this area, the molecular basis of many metal-dependent biochemical processes is still unclear. The article presents generalized material containing up-to-date information from domestic and foreign authors about various chemical forms of copper and manganese in a living organism.

Key words: microelements, metallomics, elemental analysis, speciation analysis, copper, manganese.

References

  1. Radysh IV, Skalny AV, Notova SV, et al. Introduction to elementology. Ministry of Education and Science of the Russian Federation, Orenburg State University. Orenburg: OSU, 2017. 184 p.
  2. Skalny AV, Vyatchanina ES. Prospects for the application of the analysis of chemical forms of elements (“Speciation Analysis”) in biology and medicine. Clinical and Laboratory Consultation. 2008;3(22):26-32.
  3. Adamczyk-Sowa M, Sowa P, Mucha S, Zostawa J, Mazur B, Owczarek M, Pierzchala K. Changes in serum ceruloplasmin levels based on immunomodulatory treatments and melatonin supplementation in multiple sclerosis patients. Medical Science Monitor. 2016;22:2484-2491. doi: 10.12659/MSM.895702
  4. Ackerman CM, Chang CJ. Copper signaling in the brain and beyond. Journal of Biological Chemistry. 2018;293(13):4628-4635. doi: 10.1074/jbc.R117.000176
  5. Aliaga ME, López-Alarcón C, Bridi R, Speisky H. Redox-implications associated with the formation of complexes  between  copper ions and reduced or oxidized glutathione. Journal of Inorganic Biochemistry. 2016;154:78-88. doi: https://doi.org/10.1016/j.jinorgbio.2015.08.005
  6. Alkadi HA. Review on Free Radicals and Antioxidants. Infectious Disorders – Drug Targets. 2020;20(1):16-26. doi: 10.2174/1871526518666180628124323
  7. Arakawa Y. Trace elements maintaining the vital functions. Nihon Rinsho. 2016;74(7):1058-1065.
  8. Aschner M, Erikson K. Manganese. Advances in Nutrition. 2017;8(3):520-521. doi: https://doi.org/10.3945/an.117.015305
  9. Aycicek A, Koc A, Oymak Y, Selek S, Kaya C, Guzel B. Ferrous sulfate (Fe2+) had a faster effect than did ferric polymaltose (Fe3+) on increased oxidant status in children with iron-deficiency anemia. J Pediatr Hematol Oncol. 2014;36(1):57-61. doi: 10.1097/MPH.0b013e318299c91a
  10. Bal W, Sokołowska M, Kurowska E, Faller P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochimica et Biophysica Acta (BBA) – General Subjects. 2013;1830(12):5444-5455. doi: https://doi.org/10.1016/j.bbagen.2013.06.018
  11. Balsano C, Porcu C, Sideria S. Is copper a new target to counteract the progression of chronic diseases? Metallomics. 2018;10(12):1712-1722. doi: https://doi.org/10.1039/C8MT00219C
  12. Banci L. Metallomics and the Cell. Dordrecht: Springer Science and Business Media; 2013:641 p.
  13. Bernevic B, El-Khatib AH, Jakubowski N, Weller MG. Online immunocapture ICP-MS for the determination of the metalloprotein ceruloplasmin in human serum. BMC Research Notes. 2018;11:213. doi: https://doi.org/10.1186/s13104-018-3324-7
  14. Bhattacharjee A, Chakraborty K, Shukla A. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases. Metallomics. 2017; 9(10):1376-1388. doi:https://doi.org/10.1039/C7MT00066A.
  15. Bhattacharya PT, Misra SR, Hussain M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica (Cairo). 2016: 5464373. doi: https://doi.org/10.1155/2016/5464373
  16. Bjorklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: Current research and emerging trends. Environ Res. 2017;159:545-554. doi: https://doi.org/10.1016/j.envres.2017.08.051
  17. Bornhorst J, Ebert F, Hartwig A, Michalke B, Schwerdtle T. Manganese inhibits poly(ADP-ribosyl)ation in human cells: a possible mechanism behind manganese-induced toxicity. Journal of Environmental Monitoring. 2010;12(11):2062-2069. doi: https://doi.org/10.1039/C0EM00252F
  18. Boulet A, Vest KE, Maynard MK, Gammon MG, Russell AC, Mathews AT, Cole SE, Zhu X, Phillips CB, Kwong JQ, Dodani SC, Leary SC, Cobine PA. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis. Journal of Biological Chemistry. 2018;293(6):1887-1896. doi: 10.1074/jbc.RA117.000265
  19. Braga F, Szоke D, Valente C, Panteghini M. Biologic variation of copper, ceruloplasmin and copper/ceruloplasmin ratio (Cu:Cp) in serum. Clinica Chimica Acta. 2013;415:295-296. doi: https://doi.org/10.1016/j.cca.2012.11.007
  20. Bryan MR, Bowman AB. Manganese and the Insulin-IGF Signaling Network in Huntington’s Disease and Other Neurodegenerative Disorders. In: Aschner M., Costa L, editors. Neurotoxicity of Metals. Advances in Neurobiology. 2017;18:113-142. doi: https://doi.org/10.1007/978-3-319-60189-2_6
  21. Cabrera A, Alonzo E, Sauble E, , Chu YL, Nguyen D, Linder MC, Sato DS, Mason AZ. Copper binding components of blood plasma and organs, and their responses to influx of large doses of 65 Cu, in the mouse. BioMetals. 2008;21(5): 525-543. doi: https://doi.org/10.1007/s10534-008-9139-6
  22. Catalani S, Paganelli M, Gilberti ME, Rozzini L, Lanfranchi F, Lanfranchi F, Padovani A, Apostoli P. Free copper in serum: An analytical challenge and its possible applications. Journal of Trace Elements in Medicine and Biology. 2018;45:176-180. doi:https://doi.org/10.1016/j.jtemb.2017.11.006
  23. Chen P, Bornhorst J, Aschner M. Manganese metabolism in humans. Frontiers in Bioscience. 2018;23:1655-1679.
  24. Chen Z, Song S, Wen Y, Zou Y, Liu H. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress. Environ Sci Pollut Res Int. 2016;23(18):17910-17918. doi: https://doi.org/10.1007/s11356-016-6997-2
  25. Culotta VC, Yang M, O’Halloran TV. Activation of superoxide dismutases: Putting the metal to the pedal. Biochimica et Biophysica Acta (BBA) -Molecular Cell Research. 2006;1763(7):747-758. doi: https://doi.org/10.1016/j.bbamcr.2006.05.003
  26. Deponte M. The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures. Antioxidants & Redox Signaling. 2017;27(15):1130-1161. doi: https://doi.org/10.1089/ars.2017.7123
  27. DesMarais TL, Costa M. Mechanisms of Chromium-Induced Toxicity. Curr Opin Toxicol. 2019;14:1-7. doi:https://doi.org/10.1016/j.cotox.2019.05.003
  28. Diederich J, Brielmeier M, Schwerdtle T, Michalke B. Manganese and iron species in Sprague-Dawley rats exposed with  MnCl2 4H2O  (i.v.).  Microchemical  Journal.  2012;105:115-123. doi: https://doi.org/10.1016/j.microc.2012.03.015
  29. Djurdjevic P, Jakovljevic I, Joksovic L, Ivanovic N, Jelikic-Stankov M. The Effect of Some Fluoroquinolone Family Members on Biospeciation of Copper(II), Nickel(II) and Zinc(II) Ions in Human Plasma. Molecules. 2014;19(8):12194-12223. doi: https://doi.org/10.3390/molecules190812194
  30. Doguer C, Ha JH, Collins JF. Intersection of iron and copper metabolism in the mammalian intestine and liver. Compr Physiol. 2018; 8(4): 1433-1461. doi: https://doi.org/10.1002/cphy.c170045
  31. Essentials of Medical Geology: Impacts of the Natural Environment on Public Health. Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh Ulf, Smedley P, editors. Burlington, MA: Elsevier Academic Press; 2005: 812 p.
  32. Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics. 2014;6:921-931. doi: https://doi.org/10.1039/C4MT00022F
  33. Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. American Journal Of Physiology-Cell Physiology. 2018;315:186-201. doi: 10.1152/ajpcell.00132.2018
  34. Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Archives of Toxicology. 2014;88(11):1929-1938. doi: https://doi.org/10.1007/s00204-014-1355-y
  35. Ganini D, Canistro D, Jang J, Stadler K, Mason RP, Kadiiska MB. Ceruloplasmin (ferroxidase) oxidizes hydroxylamine probes: deceptive implications for free radical detection. Free Radical Biology & Medicine. 2012;53(7):1514-1521. doi: https://doi.org/10.1016/j.freeradbiomed.2012.07.013
  36. Ghaffari MA, Ghiasvand T. Kinetic study of low density lipoprotein oxidation by copper. Indian Journal of Clinical Biochemistry. 2010;25(1):29-36. doi: https://doi.org/10.1007/s12291-010-0006-1
  37. Gupta A, Lutsenko S. Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Medicinal Chemistry. 2009;1(6):1125-1142. doi: 10.4155/fmc.09.84
  38. Haraguchi H. Metallomics as integrated biometal science. Journal of Analytical Atomic Spectrometry. 2004;19(1):5-14. doi: https://doi.org/10.1039/B308213J
  39. Hordyjewska A, Popiołek L, Kocot J. The many “faces” of copper in medicine and treatment. Biometals. 2014;27(4):611-621. doi: https://doi.org/10.1007/s10534-014-9736-5
  40. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese is essential for neuronal health. Annual Review of Nutrition. 2015;35:71-108. doi: https://doi.org/10.1146/annurev-nutr-071714-034419
  41. Hureau C, Eury H, Guillot R, Bijani C, Sayen S, Solari PL, Guillon E, Faller P, Dorlet P. X-ray and solution structures of Cu(II) GHK and Cu(II) DAHK complexes: influence on their redox properties. Chemistry. 2011;17(36):10151-10160. doi: https://doi.org/10.1002/chem.201100751
  42. Inagaki K, Mikuriya N, Morita S, Haraguchi H, Nakahara Y, Hattori M, Kinosita T, Saito H. Speciation of protein-binding zinc and copper in human blood serum by chelating resin pre-treatment and inductively coupled plasma mass spectrometry. Analyst. 2000;125(1):197-203. doi: https://doi.org/10.1039/A907088E
  43. Jursa T, Smith DR. Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Тoxicological Sciences. 2009;107(1):182-193. doi: https://doi.org/10.1093/toxsci/kfn231
  44. Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Communication and Signaling. 2018;16:71. doi: https://doi.org/10.1186/s12964-018-0277-3
  45. Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nature Chemical Biology. 2008;4(3):176-185. doi: https://doi.org/10.1038/nchembio.72
  46. Kinebuchi M, Matsuura A, Kiyono T, Nomura Y, Kimura S. Diagnostic copper imaging of Menkes disease by synchrotron radiation-generated X-ray fluorescence analysis. Scientific Reports. 2016;6:33247. doi: https://doi.org/10.1038/srep33247
  47. Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS, Choi DK. The Role of free radicals in the aging brain and parkinson’s disease: convergence and parallelism. International Journal of Molecular Sciences. 2012;13(8):10478-10504. doi: https://doi.org/10.3390/ijms130810478
  48. Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics. 2016;8(9):887-905. doi: https://doi.org/10.1039/C6MT00103C
  49. Liu N, Lo LS, Askary SH, Jones L, Kidane TZ, Trang T, Nguyen M, Goforth J, Chu YH, Vivas E, Tai M, Westbrook T, Linder MC. Transcuprein is a macroglobulin regulated by copper and iron availability. The Journal of Nutritional Biochemistry. 2007;18(9):597-608. doi: https://doi.org/10.1016/j.jnutbio.2006.11.005
  50. Lutsenko S. Copper trafficking to the secretory pathway. Metallomics. 2016;8(9):840-852. doi: https://doi.org/10.1039/C6MT00176A
  51. Lutsenko S. Human copper homeostasis: a network of interconnected pathways. Current Opinion in Chemical Biology. 2010;14(2):211-217. doi: https://doi.org/10.1016/j.cbpa.2010.01.003
  52. Marques CMS, Nunes EA, Lago L, et al. Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. Mutation Research. 2017;824:42-51. doi: https://doi.org/10.1016/j.mrgentox.2017.10.005
  53. Mendoza M, Caltharp S, Song M, Collin L, Konomi JV, McClain CJ, Vos MB. Low Hepatic Tissue Copper in Pediatric Non-Alcoholic Fatty Liver Disease. Journal of Pediatric Gastroenterology and Nutrition. 2017;65(1)89-92. doi: 10.1097/MPG.0000000000001571
  54. Metal Ion in Stroke. Li YV, Zhang JH, editors. New York: Springer Science and Business Media, 2012: 810 p.
  55. Metallomics. Recent Analytical Techniques and Applications. Ogra Y, Hirata T, editors. Springer Japan KK, 2017:364 p. doi:10.1007/978-4-431-56463-8
  56. Meyer M. Processing of collagen based biomaterials and the resulting materials properties. BioMedical Engineering OnLine. 2019;18:24. doi: https://doi.org/10.1186/s12938-019-0647-0
  57. Michalke B. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms. Journal of Trace Elements in Medicine and Biology. 2016;37:50-61. doi: https://doi.org/10.1016/j.jtemb.2016.03.002
  58. Michalke B, Aslanoglou L, Ochsenkuhn-Petropoulou M, Bergstrоm B, Berthele A, Vinceti M, Lucio M, Lidén G. An approach for manganese biomonitoring using a manganese carrier switch in serum from transferrin to citrate at slightly elevated manganese concentration. Journal of Trace Elements in Medicine and Biology. 2015;32:145-154. doi: https://doi.org/10.1016/j.jtemb.2015.07.006
  59. Michalke B, Berthele A, Mistriotis P, Ochsenkuhn-Petropoulou M, Halbach S. Manganese species from human serum, cerebrospinal fluid analyzed by size exclusion chromatography-, capillary electrophoresis coupled to inductively coupled plasma mass spectrometry. Journal of Trace Elements in Medicine and Biology. 2007a;21(1):4-9. doi: https://doi.org/10.1016/j.jtemb.2007.09.004
  60. Michalke B, Berthele A, Mistriotis P, Ochsenkuhn-Petropoulou M, Halbach S. Manganese speciation in human cerebrospinal fluid using CZE coupled to inductively coupled plasma MS. Electrophoresis. 2007b;28(9):1380-1386. doi: https://doi.org/10.1002/elps.200600686
  61. Michalke B, Fernsebner K. Neue einsichten in die toxizität und die speziation von Mangan. Perspectives in Medicine. 2014a;2(1-4):109-124. doi: https://doi.org/10.1016/j.permed.2013.12.001
  62. Michalke B, Fernsebner K. New insights into manganese toxicity and speciation. Journal of Trace Elements in Medicine and Biology. 2014b;28(2):106-116. doi: https://doi.org/10.1016/j.jtemb.2013.08.005
  63. Michalke B, Luciо M, Berthele А, Kanawati B. Manganese speciation in paired serum and CSF samples using SEC-DRC-ICP-MS and CE-ICP-DRC-MS. Analytical and Bioanalytical Chemistry. 2013;405(7):2301-2309.doi: https://doi.org/10.1007/s00216-012-6662-7
  64. Moriya M, Ho Y, Grana A, Nguyen L, Alvarez A, Jamil R, Ackland L. Copper is taken up efficiently from albumin and α2-macroglobulin by cultured human cells by more than one mechanism. Аmerican journal of physiology-cell physiology. 2008;295(3):708-721. doi: https://doi.org/10.1152/ajpcell.00029.2008
  65. Morrell A, Tallino S, Yu L, Burkhead JL. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life. 2017;69(4):263-270. doi: https://doi.org/10.1002/iub.1613
  66. Neth K, Lucio M, Walker A, Zorn J, Schmitt-Kopplin P, Michalke B. Changes in brain metallome/metabolome pattern due  to  a  single i.v  injection of manganese in rats. PLoS One. 2015;10(9). doi: https://doi.org/10.1371/journal.pone.0138270
  67. Neth K, Lucio M, Walker A, Kanawati B, Zorn J, Schmitt-Kopplin P, Michalke B. Diverse Serum Manganese Species Affect Brain Metabolites Depending on Exposure Conditions. Chemical Research in Toxicology. 2015;28(7):1434-1442. doi: https://doi.org/10.1021/acs.chemrestox.5b00104
  68. Nischwitz V, Berthele A, Michalke B. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: An approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Analytica Chimica Acta. 2008;627(2):258-269. doi: https://doi.org/10.1016/j.aca.2008.08.018
  69. Ohrvik H, Thiele DJ. The role of Ctr1 and Ctr2 in mammalian copper homeostasis and platinum-based chemotherapy. Journal of  Trace  Elements  in  Medicine  and  Biology. 2015;31:178-182. doi: https://doi.org/10.1016/j.jtemb.2014.03.006
  70. Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacology and Toxicology. 2016;17:57. doi: https://doi.org/10.1186/s40360-016-0099-0
  71. Petro A, Sexton HG, Miranda C, Rastogi A, Freedman JH, Levin ED. Persisting neurobehavioral effects of developmental copper exposure in wildtype and metallothionein 1 and 2 knockout mice. BMC Pharmacology and Toxicology. 2016;17:55. doi: https://doi.org/10.1186/s40360-016-0096-3
  72. Pickart L, Vasquez-Soltero JM, Margolina A. GHK Peptide as a natural modulator of multiple cellular pathways in skin regeneration. BioMed Research International. 2015;2015:1-7. doi: https://doi.org/10.1155/2015/648108
  73. Pickart L, Vasquez-Soltero JM, Margolina A. The effect of the human peptide GHK on gene expression relevant to nervous system function and cognitive decline. Brain Sciences. 2017;7(2):20. doi: https://doi.org/10.3390/brainsci7020020
  74. Piotrowska A, Pilch W, Tota L, Nowak G. Biological significance of chromium III for the human organism. Med Pr. 2018;69(2):211-223. doi: https://doi.org/10.13075/mp.5893.00625
  75. Puchkova LV, Babich PS, Zatulovskaia YA, Ilyechova EY, Di Sole F. Copper metabolism of newborns is adapted to milk ceruloplasmin as a nutritive source of copper: overview of the current data. Nutrients. 2018;10(11):1591. doi: https://doi.org/10.3390/nu10111591
  76. Racette BA, Aschner M, Guilarte TR, Dydak U, Criswell SR, Zheng W. Pathophysiology of manganese-associated neurotoxicity. Neurotoxicology. 2012;33(4):881-886. doi: https://doi.org/10.1016/j.neuro.2011.12.010
  77. Ramek M, Markoviс M, Mutapсiс I, Pejiс J, Kelterer AM, Saboloviс J. Conformational analyses of physiological binary and ternary copper(II) complexes with l-Asparagine and l-Histidine; study of tridentate binding of  copper(II)  in  aqueous  solution.  Chemistry  Open. 2019;8(7):852-868. doi: https://doi.org/10.1002/open.201900159
  78. Ramos D, Mar D, Ishida M, Vargas R, Gaite M, Montgomery A, Linder MC. Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. PLoS One. 2016;11(3):1-23. doi: https://doi.org/10.1371/journal.pone.0149516
  79. Samygina VR, Sokolov AV, Bourenkov G, Schneider TR, Anashkin VA, Kozlov SO, Kolmakov NN, Vasilyev VB. Rat ceruloplasmin: a new labile copper binding site and zinc/copper mosaic. Metallomics. 2017;9(12):1828-1838. doi: 10.1039/c7mt00157f
  80. Schramel P, Michalke B, Emons H, Gоen T, Hartwig A. Arsenic and arsenic compounds – Determination of arsenic species (As(III), As(V), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine) in urine by HPLC-ICP-MS [Biomonitoring Methods, 2018]. The MAK-Collection for Occupational Health and Safety: Annual Thresholds and Classifications for the Workplace. 2018;3(4):2149-2169. doi: https://doi.org/10.1002/3527600418.bi744038vere2218
  81. Sendzik M, Pushie MJ, Stefaniak E, Haas KL. Structure and affinity of Cu(I) bound to human serum albumin. inorganic chemistry. 2017;56(24):15057-15065. doi: https://doi.org/10.1021/acs.inorgchem.7b02397
  82. Seo YA, Li Y, Wessling-Resnick M. Iron depletion increases manganese uptake and potentiates apoptosis through ER stress. NeuroToxicology. 2013;38:67-73. doi: https://doi.org/10.1016/j.neuro.2013.06.002
  83. Shi Y, Wang R, Yuan W, Liu Q, Shi M, Feng W, Wu Z, Hu K, Li F. Easy-to-Use Colorimetric Cyanine Probe for the Detection of Cu2+ in Wilson’s Disease. ACS Applied Materials & Interfaces. 2018;10(24):20377-20386. doi: https://doi.org/10.1021/acsami.8b07081
  84. Shibazaki S, Uchiyama S, Tsuda K, Taniuchi N. Copper deficiency caused by excessive alcohol consumption. BMJ Case Reports. 2017;2017:bcr-2017-220921. doi: http://dx.doi.org/10.1136/bcr-2017-220921
  85. Singh P, Chowdhuri DK. Environmental presence of hexavalent but not trivalent chromium causes neurotoxicity in exposed drosophila melanogaster. Mol Neurobiol. 2017;54:3368-3387. doi: https://doi.org/10.1007/s12035-016-9909-z
  86. Sinha B, Bhattacharyya K. Arsenic toxicity in rice with special reference to speciation in Indian grain and its implication on human health. J Sci Food Agric. 2015;95(7):1435-1444. doi: https://doi.org/10.1002/jsfa.6839
  87. Smith EA, Newland P, Bestwick KG, Ahmed N. Increased whole blood manganese concentrations observed in children with iron deficiency anaemia. Journal of Trace Elements in Medicine and Biology. 2013;27(1):65-69. doi: https://doi.org/10.1016/j.jtemb.2012.07.002
  88. Szpunar J. Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem. 2004;378(1):54-56. doi: https://doi.org/10.1007/s00216-003-2333-z
  89. Tapia L, González-Agüero M, Cisternas MF, Suazo M, Cambiazo V, Uauy R, González M. Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochemical Journal. 2004;378(2):617-624. doi: https://doi.org/10.1042/bj20031174
  90. Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomedicine & Pharmacotherapy. 2003;57(9):386-398. doi: https://doi.org/10.1016/S0753-3322(03)00012-X
  91. Vashchenko G, MacGillivray RTA. Multi-copper oxidases and human iron metabolism. Nutrients. 2013;5(7):2289-2313. doi: https://doi.org/10.3390/nu5072289
  92. Vetchy MPJVKKD. Biological role of copper as an essential trace element in the human organism. Ceska Slov Farm. 2018;67(4):143-153.
  93. Wang H, Liu Z, Wang S, Cui D, Zhang X, Liu Y, Zhang Y. UHPLC-Q-TOF/MS based plasma metabolomics reveals the metabolic perturbations by manganese exposure in rat models. Metallomics. 2017;9(2):192-203. doi: 10.1039/c7mt00007c
  94. Wang X, Flores SR, Ha JH, Doguer C, Woloshun RR, Xiang P, Grosche A, Vidyasagar S, Collins JF. Intestinal DMT1 is essential for optimal assimilation of dietary copper in male and female mice with iron-deficiency anemia. Journal of Nutrition. 2018;148(8):1244-1252. doi: https://doi.org/10.1093/jn/nxy111
  95. Williams RJP. Chemical selection of elements by cells. Coordination Chemistry Reviews. 2001;216-217:583-595. doi: https://doi.org/10.1016/S0010-8545(00)00398-2
  96. Willkommen D, Lucio M, Schmitt-Kopplin P, Gazzaz M, Schroeter M, Sigaroudi A, Michalke B. Species fractionation in a case-control study concerning Parkinson’s disease: Cu-amino acids discriminate CSF of PD from controls. Journal of Trace Elements in Medicine and Biology. 2018;49:164-170. doi: https://doi.org/10.1016/j.jtemb.2018.01.005
  97. Wolonciej M, Milewska E, Roszkowska-Jakimiec W. Trace elements as an activator of antioxidant enzymes. Advances in Hygiene and Experimental Medicine. Postepy Hig Med Dosw. 2016;70:1483-1498. doi: 10.5604/17322693.1229074
  98. Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics. 2017;9(8):1028-1046. doi: https://doi.org/10.1039/C7MT00079K
  99. Zatulovskaia YA, Ilyechova EY, Puchkova LV. The features of copper metabolism in the rat liver during development. PLoS One. 2015;10(10). doi: https://doi.org/10.1371/journal.pone.0140797
  100. Zhang R, Li L, Sultanbawa Y, Xu ZP. X-ray fluorescence imaging of metals and metalloids in biological systems. Am J Nucl Med Mol Imaging. 2018;8(3):169-188.

Notova Svetlana Viktorovna, Dr. Sci (Med.), Professor, First Deputy Director, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: snotova@mail.ru

Kazakova Tatyana Vitalyevna, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: vaisvais13@mail.ru

Marshinskaya Olga Vladimirovna, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: m.olja2013@yandex.ru

Received: 25 February 2020; Accepted: 16 March 2020; Published: 31 March 2020

Download