Sergey Miroshnikov, Alexandra Mustafina, Ilmira Gubaidullina

Evaluation of action of ultrafine silicon oxide on the body of broiler chickens

DOI: 10.33284/2658-3135-103-1-20

UDC 636.5:577.17

Acknowledgements:

Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0761-2019-0005)

Evaluation of action of ultrafine silicon oxide on the body of broiler chickens

Sergey A Miroshnikov, Alexandra S Mustafina, Ilmira Z Gubaidullina

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. Porous ultrafine silicon oxide (SiO2 UFP) has been widely used in various fields of biology, medicine, and agriculture. SiO2 UFP preparations are of particular interest for use in feeding farm animals and birds, which is associated with the functions of silicon as conditionally essential microelement.

For the experiment, 120 heads of 7-day broilers of “Arbor-Acres” crosses were selected, they were divided into 4 groups by the method of analogues (n = 30). During the experiment, chickens of the control group received basic diet; birds from the experimental groups were additionally injected with ultrafine silicon oxide in various dosages (100-300 mg / kg of feed).

During the study, it was found that ultrafine silicon contributes to an increase in the number of red blood cells, platelets in the bloodstream, reduces the content of white blood cells, and increases the concentration of hemoglobin and blood protein.

Feeding ultrafine silicon oxide allowed us to obtain the maximum productive effect in terms of difference in live weight on day 14 of the accounting period of 6.69%. In the course of the research, the fact of increasing feed conversion was established after SiO2 UFP preparation was included in the diet.

Key words: broiler chickens, ultrafine silicon, blood morphology and biochemistry, chicken productivity, feed consumption.

References

  1. Lebedev SV, Gavrish IA, Gubajdullina IZ, Shabunin SV. Effects caused by different doses of dietary chromium nanoparticles fed to broiler chickens Sel’skokhozyaistvennaya Biologiya [Agricultural Biology]. 2019;54(4):820-831. doi: 10.15389/agrobiology.2019.4.820eng
  2. Buyankin NF. Organosilicon compounds in poultry diets. Poultry Farming. 2011;2:34-35.
  3. Voronkov MG, Kuznetsov IG. Silicon in wildlife. Novosibirsk: Science. Sib. Dep.; 1984. 157 p.
  4. Kononenko SI, Tletseruk IR, Ovsepyan VA, Yurin DA. Silicon Dioxide in the Meat Chickens’ Feeding. Proceedings of Gorsky State Agrarian University. 2015;52(3):62-67.
  5. Eremin SV. The effect of new silicon-containing feed additive “Nabikat” on the productivity, metabolism and body resistance of broiler chickens: Abstract. dis. … Cand. Agr. Sciences. Volgograd, 2016.22 p.
  6. Ermolina SA, Buldakova KV, Sozinov VA. Blood biochemical parameters broiler chickens in applying algasola. Advances in Current Natural Sciences. 2014;9:34-37.
  7. Miroshnikov SA, Lebedev SV, Khvan OV, Rakhmatullin ShG. On the method of forming homogeneous groups of animals by element status. Vestnik of the Orenburg State University. Bioelementology application. 2006;2S(52):45-46.
  8. Kishkun AA. Clinical laboratory diagnostics: manual for nurses. Moscow: GEOTAR-Media; 2012. 720 p.
  9. Fisinin VI, Egorov IA, Okolelova TM, et al. Feeding poultry. Sergiev Posad: VNITIP; 2004: 375 p.
  10. Lobanov KN, Sushkov VS, Babushkin VA, Trofimov TR, et al. Silicon drug “Charkas” in poultry diets. Bulletin of Michurinsk State Agrarian University. 2016;2:64-70.
  11. Lebedev SV. Peculiarities of influence of Cd, I, Se and Zn microelements additional introduction into hens-layers ration on the macroelementary structure of eggs. Vestnik of the Orenburg State University. 2009;12(106):96-98.
  12. Lebedev SV, Barysheva ES, Malysheva NV. Degree of accumulation and peculiarities of toxic and essential elements interaction in organism of laboratory animals (experimental researches). Vestnik of the Orenburg State University. Bioelementology application. 2006;2S(52):33-35.
  13. Egorova IA, Okolelova TM, Ermakova VI, et al. Methodological recommendations for scientific research on feeding poultry. under ed. Fisinin VI, Egorova IA. Sergiev Posad: VNITIP; 1992. 24 p.
  14. Sizova ЕА, Korolev VL, Makaev ShA, Miroshnikova EP, Shakhov VA. Morphological and biochemical blood parameters in broilers at correction with dietary copper salts and nanoparticles. Sel’skokhozyaistvennaya biologiya [Agricultural Biology]. 2016а;51(6):903-911. doi: 10.15389/agrobiology.2016.6.903eng
  15. Sizova ЕА, Miroshnikov SА, Lebedev SV, Кudasheva АV, Ryabov NI. To the development of innovative mineral additives based on alloy of Fe and Co antagonists as an example. Sel’skokhozyaistvennaya biologiya [Agricultural Biology]. 2016б;51(4):553-562. doi: 10.15389/agrobiology.2016.4.553eng
  16. Podobed LI. The effect of silicon on the body of a bird. Godil. 2014;7 (140):11-14.
  17. Podobed LI. How to get rid of arthritis in broilers and replacement young poultry. Poultry. 2016;2;50-53.
  18. Romashchenko SV, Shantyz AYu, Shantyz AKh. Morphological changes in broilers thyroid under of iodine-containing additives action. Proceedings of the Kuban State Agrarian University. 2012;38:141-144.
  19. Sizova EA. Metabolism and productivity of broiler chickens after using ultrafine micronutrient preparations in food (dissertation). Orenburg, 2017. 344 p.
  20. Frolova LV, Pronin VV, Romanova MV, Fisenko SP, Dyumin MS. Functional activity of thyroid gland and productivity of geese vladimir argillaceous rock when using iodcasein. Achievements of Science and Technology of AICis. 2013;2:42-43.
  21. Andreeva ER, Rudimov EG, Gornostaeva AN, Beklemyshev VI, Makhonin II, Maugeri UO, Buravkova LB. In vitro study of interactions between silicon-containing nanoparticles and human peripheral blood leukocytes. Bull Exp Biol Med. 2013;155(3):396-398. doi: https://doi.org/10.1007/s10517-013-2161-x
  22. Azimipour S, Ghaedi S, Mehrabi Z, Ghasemzadeh SA, Heshmati M, Barikrow N, Attar F, Falahati M. Heme degradation and iron release of hemoglobin and oxidative stress of lymphocyte cells in the presence of silica nanoparticles. J Biol Macromol. 2018;118(PtA):800-807. doi: https://doi.org/10.1016/j.ijbiomac.2018.06.128
  23. Barnes TJ, Jarvis KL, Prestidge CA. Recent advances in porous silicon technology for drug delivery. Ther Deliv. 2013;4(7):811-23. doi: https://doi.org/10.4155/tde.13.52
  24. Kemona H, Andrzejewska A, Prokopowicz J, Nowak H, Mantur M. Phagocytic activity of human blood platelets examined by electron microscopy. Folia Haematologica. 1986;113(5):696-702.
  25. Kozelskaya AI, Panin AV, Khlusov IA, Mokrushnikov PV, Zaitsev BN, Kuzmenko DI, Vasyukov GY. Morphological changes of the red blood cells treated with metal oxide nanoparticles. Toxicol In Vitro. 2016; 37:34-40. doi: https://doi.org/10.1016/j.tiv.2016.08.012
  26. Meseguer J, Esteban MM, Rodriguez A. Are thrombocytes and platelets true phagocytes? Microsc Res Tech. 2002;57(6):491-497. doi: https://doi.org/10.1002/jemt.10102
  27. Miroshnikov SA, Yausheva EV, Sizova EA, Miroshnikova EP, Levahin VI. Comparative assessment of effect of cooper nano- and microparticles in chicken. Oriental Journal of Chemistry. 2015; 31(4):2327-2336. doi: http://dx.doi.org/10.13005/ojc/310461
  28. Murugadoss S, Lison D, Godderis L, Brule S Van Den, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of nanoparticles: an update. Arch Toxicol. 2017;91:2967-3010. doi: https://doi.org/10.1007/s00204-017-1993-y
  29. Noisakran S, Gibbons RV, Songprakhon P et al. Detection of dengue virus in platelets isolated from dengue patients. Southeast Asian Journal of Tropical Medicine and Public Health. 2009;40(2):253-262
  30. Paul MSt, Paolucci S, Barjesteh N, Wood RD, Schat KA, Sharif S. Characterization of chicken thrombocyte responses to Toll-like receptor ligands. PLoS One. 2012;7(8):e43381. doi: https://doi.org/10.1371/journal.pone.0043381
  31. Sabziparvar N, Saeedi Y, Nouri M, Najafi Bozorgi AS, Alizadeh E, Attar F, Akhtari K, Mousavi SE, Falahati M. Investigating the Interaction of Silicon Dioxide Nanoparticles with Human Hemoglobin and Lymphocyte Cells by Biophysical, Computational, and Cellular Studies. J Phys Chem B. 2018;122(15):4278-4288. doi: https://doi.org/10.1021/acs.jpcb.8b00193
  32. Salonen J, Mäkilä E. Тhermally carbonized porous silicon and its recent applications. Adv Mater. 2018;30(24):e1703819. doi: https://doi.org/10.1002/adma.201703819
  33. Shahbazi MA, Fernández TD, Mäkilä EM, Guével X Le, Mayorga C, Kaasalainen MH, Salonen JJ, Hirvonen JT, Santos HA. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials. 2014;35(33):9224-9235. doi: https://doi.org/10.1016/j.biomaterials.2014.07.050
  34. Tang M, Ji X, Xu H, Zhang L, Jiang A, Song B, Su Y, He Y. Photostable and Biocompatible Fluorescent Silicon Nanoparticles-Based Theranostic Probes for Simultaneous Imaging and Treatment of Ocular Neovascularization. Anal Chem. 2018;90(13):8188-8195. doi: https://doi.org/10.1021/acs.analchem.8b01580
  35. Tang YQ, Yeaman MR, Selsted ME Antimicrobial peptides from human platelets. Infection and Immunity. 2002;70(12):6524-6533. doi: 10.1128/iai.70.12.6524-6533.2002
  36. Tierney J, Gowing H, Sinderen D Van, Flynn S, Stanley L, McHardy N, Hallahan S, Mulcahy G. In vitro inhibition of Eimeria tenella invasion by indigenous chicken Lactobacillus species. Veterinary Parasitology. 2004;122(3):171-182. doi: https://doi.org/10.1016/j.vetpar.2004.05.001
  37. Wang G, Zhou H , Nian QG, Yang Y, Qin CF, Tang R. Robust vaccine formulation produced by assembling a hybrid coating of polyethyleneimine–silica. Chem Sci. 2016;7(3):1753-1759. doi: https://doi.org/10.1039/C5SC03847B
  38. Wang G, Wang HJ, Zhou H, Nian QG, Song Z, Deng YQ, Wang X, Zhu SY, Li XF, Qin CF, Tang R. Hydrated silica exterior produced by biomimetic silicification confers viral vaccine heat-resistance. ACS Nano. 2015;9(1):799-808. doi: https://doi.org/10.1021/nn5063276
  39. Xing R, Li KL, Zhou YF, Su YY, Yan SQ, Zhang KL, Wu SC, Sima YH, Zhang KQ, He Y, Xu SQ. Impact of fluorescent silicon nanoparticles on circulating hemolymph and hematopoiesis in an invertebrate model organism. Chemosphere. 2016;159:628-637. doi: https://doi.org/10.1016/j.chemosphere.2016.06.057
  40. Miroshnikov SA, Yausheva EV, Sizova ЕA, Miroshnikova EP, Levahin VI. Comparative assessment of effect of cooper nano- and microparticles in chicken. Orient J Chem. 2015;31(4):2327-2336. doi: http://dx.doi.org/10.13005/ojc/310461

Miroshnikov Sergey Aleksandrovich, Dr. Sci (Biol.), RAS Corresponding Member, Director, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-70, e-mail: vniims.or@mail.ru

Mustafina Alexandra Sergeevna, Specialist of Testing Centre of Common Use Centre, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8-912-340-21-10, е-mail: vshivkovaas@mail.ru

Gubaidullina Ilmira Zakievna, Junior Researcher Laboratory for Biological Testing and Expertises, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., е-mail: gubaidullinae@mail.ru, tel.: 8-912-843-10-69

Received: 28 February 2020; Accepted: 16 March 2020; Published: 31 March 2020

Download