Elena Sizova, Kseniya Nechitailo

Comparative assessment of the effect of ultrafine forms of copper and zinc on the digestibility

of dry matter in vitro

DOI: 10.33284/2658-3135-103-1-121

UDC 636.085:577.17


This work was supported by the fundamental research program of the Ural Branch of the Russian Academy of Sciences, project No. 18-8-9-19 “Fundamental fundamentals of the synthesis and use of nanostructures in animal husbandry”

Comparative assessment of the effect of ultrafine forms of copper and zinc on the digestibility

of dry matter in vitro

Elena A Sizova, Kseniya S Nechitailo

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. Ultrafine particles have previously unknown biological effects and a number of unique properties. The practical application of ultrafine particles (UFP) allows you to create a fundamentally new, unparalleled technology.

In the study, we conducted a comparative assessment of the digestibility of dry matter in vitro feed with the addition of Cu and Zn in ultrafine form as individual trace elements, their powder mixture and alloy.

In the course of studies, it was found that the addition of a powder mixture of Cu-Zn UFP (0.048 mg/g dry matter) increases the digestibility of dry matter by 5.3% (P≤0.05) in comparison with the control group. The introduction of Cu UFP (0.016 mg/g dry matter) enhances the digestibility of dry matter by 12% (P≤0.05). With an increase in dose to 0.024 mg/g of dry matter, a decrease of 7.7% occurred (P≤0.05). The addition of Zn UFP (0.08 mg/g dry matter) increases the digestibility by 2.7% (P≤0.05). Alloy of CuZn UFP (0,048 mg/g dry matter) leads to a decrease in the digestibility coefficient by 4.9% (P≤0.05), a dose of 0.096 mg/g of dry matter contributes to a decrease of 5.4% (P≤0.05).

Thus, the introduction of Cu and Zn UFP as individual trace elements and their powder mixture, leads to an increase in the digestibility coefficient by intensifying the hydrolysis of the components of the feed substrate in ruminal fluid in vitro.

Key words: bulls, Red Steppe Breed, feeding, ruminal fluid, ultrafine particles, digestibility, copper, zinc, microelements.


  1. Alekseeva LV, Lukyanov AA. Processes of cicatricial metabolism in the organism of bull-calves at introduction in a diet of nanopowder of copper and its salts. Research and Scientific Electronic Journal of the Omsk SAU. 2016;S2:1-5.
  2. Lebedev SV, Gavrish IA, Gubaidullina IZ, Shabunin SV. Effects caused by different doses of dietary chromium nanoparticles fed to broiler chickens. Agricultural Biology. 2019а;54(4):820-831. doi: 10.15389/agrobiology.2019.4.820eng
  3. Atlanderova KN, Makaeva AM, Miroshnikov SA, Sizova EA. The effect of the preparation based on ultrafine particles and oak bark extract on mineral composition of ruminal fluid. Animal Husbandry and Fodder Production. 2019;102(3):106-116. doi: 10.33284/2658-3135-102-3-106
  4. Sizova EA, Kholodilina TN, Miroshnikov SA, Polyakova VS, Glushchenko NN. On development of safety criteria in metal nanoparticles while introducing to animal organism. Vestnik of the Russian Agricultural Sciences. 2011;1:40-42.
  5. Kulikov KG, Koshlan TV. Measurement of sizes of colloid particles using dynamic light scattering. Technical Physics. 2015;85(12):26-32.
  6. 6. Levakhin GI, Meshcheryakov AG. Improving the method for determination of protein splitting capacity in laboratory conditions. Reports of the Russian Academy of Agricultural Sciences. 2003;3:12-13.
  7. Miroshnikov IS. Influence of metals nanoparticles on ruminal digestion and metabolism of chemical elements in system “bacteria-protozoa” of rumen. Herald of Beef Cattle Breeding. 2017;1(97):68-77.
  8. Miroshnikov SA, Sizova EA. Nanomaterials in animal husbandry (review). Herald of Beef Cattle Breeding. 2017;3(99):7-22.
  9. Morozova LA. Mineral and vitamin premixes in feeding highly productive cows. Bulletin of the Krasnoyarsk State Agrarian University. 2007;2:192-196.
  10. Sizova EA, Miroshnikov SA, Lebedev SV, Kudasheva AV, Ryabov NI. To the development of innovative mineral additives based on alloy of Fe and Co antagonists as an example. Agricultural Biology. 2016;51(4):553-562. doi: 10.15389/agrobiology.2016.4.553eng
  11. Lebedev SV, Gubaidullina EZ, Sheida EV, Grechkina VV. Exchange (uptake and synthesis) of amino acids in the digestive tract of cattle when used in diet different ingredient composition of the feed. The Agrarian Scientific Journal. 2019b;4:54-57. doi: 10.28983/asj.y2019i4pp54-57
  12. Sizova EA. Comparative analysis of the different-sized copper and iron nanoparticles biological effects. Vestnik of the Russian Agricultural Sciences. 2017;3:13-17.
  13. Sizova EA, Nechitaylo KS, Ivanishcheva AP. Application of ultrafine forms of metals in diets for birds as mineral feed additive. (Conference proceedigs) Fundamentals of technological development of agriculture: materialy ros. nauch.-prakt. konf. s mezhdunar. uchastiem, (g. Orenburg, 24-25 okt. 2019 g.) pod obshch. red. chl.-korr. RAN Miroshnikova SA. Orenburg: Izd-vo FNTs BST RAN, 2019:280-284.
  14. Sizova EA, Yausheva EV. Comparative productivity of broiler chickens injected with variously sized ultrafine iron particles. Animal Husbandry and Fodder Production. 2019;102(1):6-21. doi: 10.33284/2658-3135-102-1-6
  15. Sizova EA, Miroshnikov SA, Lebedev SV, Levakhin YuI, Babicheva IA, Kosilov VI. Comparative tests of various sources of microelements in feeding chicken-broilers. Agricultural Biology. 2018;53(2):393-403. doi: 10.15389/agrobiology.2018.2.393eng
  16. Ushakov AS. Problems of mineral nutrition during fattening cattle on bard. Herald of Beef Cattle Breeding. 2005;58(1):140-141.
  17. Ushakov AS, Miroshnikov SA, Rakhmatullin ShG. Influence of different feed formula sufficiency on zinc metabolism in animals. Herald of Beef Cattle Breeding. 2017;4(100):153-159.
  18. Shusharin AD. Effektivnost’ primeneniya mikroelementov dlya korrektsii narushennogo obmena veshchestv u korov. Agrarian Bulletin of the Urals. 2007;1:44-46.
  19. Makaeva AM, Atlanderova KN, Sizova EA, Miroshnikov SA, Vanshin VV. The elemental and microecological composition of rumen after use of highly dispersive particles in cattle  feeding.  Animal  Husbandry  and  Fodder  Production. 2019;102(3):19-32.  doi: 10.33284/2658-3135-102-3-19
  20. Auza N. Le cuivre chez les ruminants. Une revue. Annales de Recherches Vétérinaires, INRA Editions. 1983;14(1):21-37.
  21. 21. Barbu E, Molnàr E, Tsibouklis J, Górecki DC. The potential for nanoparticle-based drug delivery to the  brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv. 2009;6(6):553-565. doi: https://doi.org/10.1517/17425240902939143
  22. Bonhomme A. Rumen Ciliates: their metabolism and relationships with bacteria and their hosts. Animal Feed Science and Technology. 1990;30(3-4):203-266. doi: https://doi.org/10.1016/0377-8401(90)90016-2
  23. Dominguez A, Suarez-Merino B, Goni-de-Cerio F. Nanoparticles and blood-brain barrier: the key to central nervous system diseases. J Nanosci Nanotechnol. 2014;14(1):766-779. doi: https://doi.org/10.1166/jnn.2014.9119
  24. 24. Eckard RJ, Grainger C and De Klein CAM. Options for the abatement of methane and nitrous oxide from ruminant  production:  A review.  Livest Sci. 2010;130(1):47-56. doi: https://doi.org/10.1016/j.livsci.2010.02.010
  25. Eryavuz A, Dehority BA. Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Animal Feed Science and Technology. 2009;151(3-4):175-183. doi: https://doi.org/10.1016/j.anifeedsci.2009.01.008
  26. 26. Gooneratne SR, Buckley WT, Christensen DA. Review of copper deficiency and metabolism in ruminants. Can J Anim Sci. 1989;69(4):819-845. doi: https://doi.org/10.4141/cjas89-096
  27. Gould L, Kendall NR. Role of the rumen in copper and thiomolybdate absorption. Nutr Res Rev. 2011;24(2):176-182. doi: https://doi.org/10.1017/S0954422411000059
  28. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77(5):1541-1547. doi: https://doi.org/10.1128/AEM.02766-10
  29. Hernández-Sánchez D, Cervantes-Gómez D, Ramírez-Bribiesca JE et al. The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production. J Sci Food Agric. 2019;99(3):1073-1077. doi: https://doi.org/10.1002/jsfa.9274
  30. Hilal EY, Elkhairey MAE, Osman AOA. The role of zinc, manganse and copper in rumen metabolism and immune function: A Review Article. Open Journal of Animal Sciences. 2016;6(4):304-324. doi: 10.4236/ojas.2016.64035
  31. Irato P, Albergoni V. Interaction between copper and zinc in metal accumulation in rats with particular reference to the synthesis of induced-metallothionein. Chem Biol Interact. 2005;155(3):155-164. doi: https://doi.org/10.1016/j.cbi.2005.06.005
  32. Kaur L, Singh I. Microwave grafted, composite and coprocessed materials: drug delivery applications. Ther Deliv. 2016;7(12):827-842. doi: https://doi.org/10.4155/tde-2016-0055
  33. Kenney GE, Rosenzweig AC. Chemistry and biology of the copper chelator methanobactin. ACS Chem. Biol. 2012;7(2):260-268. doi: https://doi.org/10.1021/cb2003913
  34. McDowell LR. Minerals in animal and human nutrition. San Diego, CA: Academic Press; 1992:524 p.
  35. Neagu M, Piperigkou Z, Karamanou K et al. Protein bio-corona: critical issue in immune nanotoxicology. Arch Toxicol. 2017;91(3):1031-1048. doi: https://doi.org/10.1007/s00204-016-1797-5
  36. Ognik K, Stijpniowska A, Cholewinska E, Kozlowski K. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci. 2016;95(9):2045-2051. doi: https://doi.org/10.3382/ps/pew200
  37. Osman D, Cavet JS. Charter 8 – Copper homeostasis in bacteria. Adv Appl Microbiol. 2008;65:217-247. doi: https://doi.org/10.1016/S0065-2164(08)00608-4
  38. Pell A, Schofield P. Microbial adhesion and degradation of plant cell walls. Forage Cell Wall Struct. Dig. ACS. Ithaca. 1993:397-423.
  39. Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell. 2004;3(1):1-13. doi: 10.1128/ec.3.1.1-13.2004
  40. Samuelson KL, Hubbert ME, Galyean ML, Löest CA. Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. J Anim Sci. 2016;94(6):2648-2663. doi: https://doi.org/10.2527/jas.2016-0282
  41. Silva GA. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci. 2008;9:S4. doi: https://doi.org/10.1186/1471-2202-9-S3-S4
  42. Spears JW. Micronutrients and immune function in cattle. Proc Nutr Soc. 2000;59(4):587-594. doi: https://doi.org/10.1017/S0029665100000835
  43. Spears JW. Trace mineral bioavailability in ruminants. J Nutr. 2003;133(5):1506S-1509S. doi: https://doi.org/10.1093/jn/133.5.1506S
  44. VanValin KR, Genther-Schroeder ON, Carmichael RN et al. Influence of dietary zinc concentration and supplemental zinc source on nutrient digestibility, zinc absorption, and retention in sheep.  J Anim Sci. 2018;96(12):5336-5344. doi: https://doi.org/10.1093/jas/sky384
  45. Velazquez A and Pichard G. Effects of rumen fluid pre-incubation in vitro proteolityc activity of enzymatic extracts  from  rumen  microorganisms.  Anim  Feed Sci Technol. 2010;162(3-4):75-82. doi: https://doi.org/10.1016/j.anifeedsci.2010.09.003
  46. Yong Z, Lan L, Peng-Fei Z, Xin-Qi L, Wei-Dong Z, Zhao-Peng D, Shi-Wen W, Wei S, Ling-Jiang M, Zhi-Hui H. Regulation of egg quality and lipids metabolism by zinc oxide nanoparticles. Poultry Sci. 2016;95(4):920-933. doi: https://doi.org/10.3382/ps/pev436
  47. Zhang P, Zhao Y, Yu S, et al. Proteome analysis of egg yolk after exposure to zinc oxide nanoparticles.Theriogenology.2017;95:154-162.doi: https://doi.org/10.1016/j.theriogenology.2017.03.009 

Sizova Elena Anatolyevna, Dr. Sci (Biol.), Head of Centre  “Nanotechnologies in Agriculture”, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8-912-344-99-07, e-mail: Sizova.L78@yandex.ru

Nechitailo Ksenia Sergeevna, 2nd year postgraduate student, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St.

Received: 13 March 2020; Accepted: 16 March 2020; Published: 31 March 2020