Tatyana V Kazakova, Olga V Marshinskaya, Sergey A Miroshnikov, Svetlana V Notova, Oleg A Zavyalov, Alexey N Frolov, Evgeniy А Tyapugin

DOI: 10.33284/2658-3135-103-2-8

UDC 636.085:577.17                                                                         

Acknowledgements:

Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (№ 0526-2019-0001)

Total accumulation of heavy trace metals in hair caused by milk production of cows

Tatyana V Kazakova, Olga V Marshinskaya, Sergey A Miroshnikov, Svetlana V Notova,

Oleg A Zavyalov, Alexey N Frolov, Evgeniy А Tyapugin

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. Modern milk production is impossible without continuous monitoring of health status of dairy cows, including indicators of mineral metabolism. This study examined the milk productivity of lactating cows of the Holstein breed, depending on the level of total increase of heavy metals. In order to assess the toxic load on the body of cows, the coefficient of total toxic load – Ctox was calculated. According to the calculation data, two groups were formed: group I included cows of the Holstein breed with a lower coefficient of toxic load (Сtox = 6.9 (6.5-7.2)) relative to the studied sample; Group II included cows with a higher toxic load coefficient (Сtox = 15.8 (13.5-24.6)). Using atomic emission and mass spectral analysis with inductively coupled plasma, the elemental composition of hair and blood serum samples of cows was studied. Assessment of animal productivity was carried out on the materials accumulated in breeding enterprises during the control milking. According to the results, a decrease in milk production was observed against the background of the total accumulation of heavy metals in the animal body. Thus, exposure to heavy metals can cause economic losses in dairy farming.

Key words: heavy metals, cows, elemental composition, hair, blood serum, milk productivity, loaded metabolism.

References

  1. Vlasova OA, Vedeneyeva NV, Orlyansky NA. Local monitoring of environment in the conditions of the Vologda region. Dairy Farming Journal. 2017;4(28):18-29.
  2. Kharlamov AV, Frolov AN, Zavyalov OA, Miroshnikov AM. Informational content of biosubstrates during assessment of element status of agricultural animals (review). Herald of Beef Cattle Breeding. 2014;4(87):53-58.
  3. Barysheva EC, Frolova OO, Notova SV, Skalny AV. Clinical correction of elemental status of industrial workers. Bulletin of Regenerative Medicine. 2008;1(23):14-17.
  4. Lebedev SV, Barysheva ES, Malysheva NV. Degree of accumulation and peculiarities of toxic and essential elements interaction in organism of laboratory animals (experimental researches). Vestnik of the Orenburg State University. 2006;2S(52):33-35.
  5. Notova SV. Ecological and physiological substantiation of the corrective effect of elemental status on functional reserves of the human body: abstract. dis. ... Dr. Med. Sciences. Moscow, 2005. 40 p.
  6. Skal'naya MG. Comparative analysis of changes in the elemental composition of biosubstrates with excessive intake of Pb, Cd, As and Ni. Vestnik of the Orenburg State University. 2005;2S-2(40):11-13.
  7. Skalny AV, Bykov AT. Ecological and physiological aspects of the use of macro- and microelements in regenerative medicine: a monograph. Orenburg: Orenburg State University; 2003. 198 p.
  8. Skalny AV, Demidov VA, Skalnaya MG. Assessment of elemental status of a population in hygienic prenosological diagnosis. Bulletin of St. Petersburg State Medical Academy named after Mechnikov II. 2001;2-3(2);64-67.
  9. Komov VT, Ivanova ES, Gremyachikh VA, Lapkina LN, Kozlova LV, Zheletok EN, Kirkina AM, Kudryashova DE, Schedrova EV, Seleznev DG. The mercury content in the organism of amphibians and leeches from waterbodies of Vologda and Yaroslavl Oblasts and experimental verification of its biological consequences. Transactions of IBIW RAS. 2017;77(80):57-76. doi: 10.24411/0320-3557-2017-10004
  10. Bachina ES, Rumiantseva OY, Ivanova ES, Komov VT, Guseva MA, Poddubnaya NY. Mercury content in the wool of domestic animals in Cherepovets. Samara Journal of Science. 2018;7(3):19-23.
  11. Teplay GA. Heavy metals as a factor of oenvironmental pollution (Review). Astrakhan Bulletin of Environmental Education. 2013;1(23):182-192.
  12. Udodenko YuG, Philippov DA. Mercury in peat deposits of the shichengskoe mire (Vologda Region, Russia). Transactions of IBIW RAS. 2017;79(82):236-242.
  13. Shuvalova OP, Ivanova ES, Komov VT. Influence of mercury accumulation on the health status of reproductive age women. Public Health and Life Environment. 2018;11(308):36-39. doi: 10.35627/2219-5238/2019-308-11-36-39
  14. Bilandziс N, Dokiс M, Sedak M, Bozica S, Varenina I, Knezevic Z, Benic M. Trace element levels in raw milk from northern and southern regions of Croatia. Food Chemistry. 2011;127(1):63-66. doi: https://doi.org/10.1016/j.foodchem.2010.12.084
  15. Bischoff K, Higgins W, Thompson B, Ebel JG. Lead excretion in milk of accidentally exposed dairy cattle. Food Addit Contam: Part A. 2014;31(5):839-844. doi: https://doi.org/10.1080/19440049.2014.888787
  16. Buchweitz J, McClure-Brinton K, Zyskowski J, Stensen L, Lehner A. Lead isotope profiling in dairy calves. Regulatory Toxicology and Pharmacology. 2015;71(2):174-177. doi: https://doi.org/10.1016/j.yrtph.2014.12.015
  17. Caito S, Aschner M. Developmental Neurotoxicity of Lead. Neurotoxicity of Metals. Advances in neurobiology. 2017;18:3-12. doi: 10.1007/978-3-319-60189-2_1
  18. Chen H, Teng Y, Lu S, Wang Y, Wang J. Contamination features and health risk of soil heavy metals in China.  Science of the Total Environment. 2015;512-513:143-153. doi: https://doi.org/10.1016/j.scitotenv.2015.01.025
  19. Chen S, Wang M, Li S, Zhao Z, Wеn E. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China. Journal of Integrative Agriculture. 2018;17(4):765-774. doi: https://doi.org/10.1016/S2095-3119(17)61892-6
  20. Ciobanu C, Slencu BG, Cuciureanu R. Estimation of dietary intake of cadmium and lead through food consumption. Rev Med Chir Soc Med Nat Iasi. 2012;116(2):617-623.
  21. Combs DK. Hair analysis as an indicator of mineral status of livestock. J Anim Sci. 1987;65(6):1753-1758. doi: https://doi.org/10.2527/jas1987.6561753x
  22. Cygan-Szczegielniak D, Stanek M, Giernatowska E, Janicki B. Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows. Folia Biol. 2014;62(3):163-169. doi: https://doi.org/10.3409/fb62_3.163
  23. Donat K, Siebert W, Menzer E, Söllner-Donat S. Long-term trends in the metabolic profile test results in German Holstein dairy herds in Thuringia, Germany. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2016;44(02):73-82. doi: 10.15653/TPG-150948
  24. Erdogan Z, Erdogan S, Celik S, Unlu A. Effects of ascorbic acid on cadmium-induced oxidative stress and  performance  of  broilers. Biological Trace Element Research. 2005;104(1):19-31. doi: 10.1385/BTER:104:1:019
  25. Guvvala PR, Ravindra JP, Selvaraju S. Impact of environmental contaminants on reproductive health of male domestic ruminants: a review. Environmental Science and Pollution Research. 2020;27(4):3819-3836. doi: https://doi.org/10.1007/s11356-019-06980-4
  26. Hamilton JD, O'Flaherty EJ. Influence of lead on mineralization during bone growth. Fundamental and Applied Toxicology. 1995;26(2):265-271. doi: https://doi.org/10.1006/faat.1995.1097
  27. 27. Hossain S, Bhowmick S., Jahan S. Rozario L, Sarkar M, Islam S, Basunia MA, Rahman A, Choudhury BK, Shahjalal H. Maternal lead exposure decreases the levels of brain development and cognition-related proteins with concomitant upsurges of oxidative stress, inflammatory response and apoptosis in the offspring rats. Neuro Toxicology. 2016;56:150-158. doi: https://doi.org/10.1016/j.neuro.2016.07.013
  28. Hossu CA, Iojа IC, Mitincu CG, Artmann M, Hersperger AM. An evaluation of environmental plans quality: Addressing the rational and communicative perspectives. Journal of Environmental Management. 2020;256: 109984. doi: 10.1016/j.jenvman.2019.109984
  29. Chen J, Chen JZ, Tan MZ, Gong ZT Soil degradation: a global problem endangering sustainable development. J Geogr Sci. 2002;12(2):243-252. doi: https://doi.org/10.1007/BF02837480
  30. Kalashnikov V, Zaitsev A, Atroschenko M, Miroshnikov S, Frolov A, Zavyalov O. The total content of toxic elements in horsehair given the level of essential elements. Environ Sci Pollut Res. 2019;26(24):24620-24629. doi: https://doi.org/10.1007/s11356-019-05630-z
  31. Kalashnikov V, Zajcev A, Atroshchenko M, Miroshnikov S, Frolov A, Zavyalov O, Kalinkova L, Kalashnikova T. The content of essential and toxic elements in the hair of the mane of the trotter horses depending on their speed. Environ Sci Pollut Res. 2018;25(22):21961-21967. doi: https://doi.org/10.1007/s11356-018-2334-2
  32. Karri V, Schuhmacher M, Kumar V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol. 2016;48:203-213. doi: https://doi.org/10.1016/j.etap.2016.09.016
  33. Kierczak J, Pedziwiatr A, Waroszewski J, Modelska M. Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma. 2016;268:78-91. doi: https://doi.org/10.1016/j.geoderma.2016.01.025
  34. Kossaibati MA, Esslemont RJ. The costs of production diseases in dairy herds in England. Vet J. 1997;154(1):41-51. doi: https://doi.org/10.1016/S1090-0233(05)80007-3
  35. Kowalska JB, Mazurek R, Gąsiorek M, Zaleski T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination- A review. Environ Geochem Health. 2018;40(6):2395-2420. doi: https://doi.org/10.1007/s10653-018-0106-z
  36. Li N, Zhang P, Qiao M, Shao J, Li H, Xie W. The effects of early life lead exposure on the expression of P2X7 receptor and synaptophysin in the hippocampus of mouse pups. Journal of Trace Elements in Medicine and Biology. 2015;30:124-128. doi: https://doi.org/10.1016/j.jtemb.2014.12.001
  37. Li N, Zhao G, Qiao M, Shao J, Liu X, Li H, Li X, Yu Z. The effects of early life lead exposure on the expression of insulin-like growth factor 1 and 2 (IGF1, IGF2) in the hippocampus of mouse pups. Food and Chemical Toxicology. 2014;63:48-52. doi: https://doi.org/10.1016/j.fct.2013.10.037
  38. Licata P, Trombetta D, Cristani M, Giofrе F, Martino D, Calо M, Naccari F. Levels of “toxic” and “essential” metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environment International. 2004;30(1):1-6. doi: https://doi.org/10.1016/S0160-4120(03)00139-9
  39. Maboeta MS, Reinecke AJ, Reinecke SA. Effects of low levels of lead on growth and reproduction of the Asian Earthworm Perionyxexcavatus (Oligochaeta). Ecotoxicology and Environmental Safety. 1999;44(3):236-240. doi: https://doi.org/10.1006/eesa.1999.1797
  40. Madejоn P, Domínguez MT, Murillo JM. Pasture composition in a trace element-contaminated area: the particular case of Fe and Cd for grazing horses. Environ Monit Assess. 2012;184(4):2031-2043. doi: https://doi.org/10.1007/s10661-011-2097-4
  41. Mazurek R, Kowalska J, Gąsiorek M, Zadrożny P, Jоzefowska A, Zaleski T, Kępka W, Tymczuk M, Orłowska K. Assessment of heavy metals contamination in surface layers of Roztocze National Park   forest   soils   (SE Poland)  by  indices  of  pollution.  Chemosphere.  2017;168:839-850. doi: https://doi.org/10.1016/j.chemosphere.2016.10.126
  42. Miroshnikov S, Kharlamov A, Zavyalov O, Frolov A, Bolodurina I, Arapova O, Duskaev G. Method of sampling beef cattle hair for assessment of elemental profile. Pakistan Journal of Nutrition. 2015;14(9):632-636.
  43. Miroshnikov S, Zavyalov O, Frolov A, Sleptsov I, Sirazetdinov F, Poberukhin M. The content of toxic elements in hair of dairy cows as an indicator of productivity and elemental status of animals. Environ Sci Pollut Res. 2019;26(18):18554-18564. doi: https://doi.org/10.1007/s11356-019-05163-5
  44. Miroshnikov SA, Skalny AV, Zavyalov OA, Frolov AN, Grabeklis AR. The reference values of hair content of trace elements in dairy cows of Holstein Breed. Biol Trace Elem Res. 2020;194(1):145-151. doi: https://doi.org/10.1007/s12011-019-01768-6
  45. Mukesh KR, Kumar P, Singh M, Singh А. Toxic effect of heavy metals in livestock health. Veterinary World. 2008;1(1):28-30. doi: 10.5455/vetworld.2008.28-30
  46. Neves RC, Leno BM, Bach KD, McArt JAA. Epidemiology of subclinical hypocalcemia in early-lactation Holstein dairy cows: The temporal associations of plasma calcium concentration in the first 4 days in milk with disease and milk production. J Dairy Sci. 2018;101(10):9321-9331. doi: 10.3168/jds.2018-14587
  47. Ordemann JM, Austin RN. Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health. Metallomics. 2016;8(6):579-588. doi: 10.1039/c5mt00300h
  48. Patra RC, Swarup D, Naresh R, Kumar P, Nandi D, Shekhar P, Roy S, Ali SL. Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas. Ecotoxicology and Environmental Safety. 2007;66(1):127-131. doi: https://doi.org/10.1016/j.ecoenv.2006.01.005
  49. Patra RC, Swarup D, Sharma MC, Naresh R. Trace mineral profile in blood and hair from cattle environmentally exposed to lead and cadmium around different industrial units. J Vet Med A. 2006;53(10):511-517. doi: https://doi.org/10.1111/j.1439-0442.2006.00868.x
  50. Pavlata L, Chomat M, Pechova A, Misurova L, Dvorak R. Impact of long-term supplementation of zinc and selenium on their content in blood and hair in goats. Veterinarni Medicina. 2011;56(2):63-74. doi: https://doi.org/10.17221/1581-VETMED
  51. Pieper L, Wall K, Müller E, Roder A, Staufenbiel R. Evaluation of sulfur status in dairy cows in Germany. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2016;44(02):92-98. doi: 10.15653/TPG-150901.
  52. 52. Pilarczyk R, Wójcik J, Czerniak P, Sablik P, Pilarczyk B, Tomza-Marciniak A. Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm. Environ Monit Assess. 2013;185(10):8383-8392. doi: https://doi.org/10.1007/s10661-013-3180-9
  53. Radostits OM, Gay CC, Hinchcliff KW, Constable PD, editors. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 10th ed. Saunders Ltd.; 2007:2065 р.
  54. Rajaganapathy V, Xavier F, Sreekumar D, Mandal PK. Heavy metal contamination in soil, water and fodder and their presence in livestock and products: A Review. Journal of Environmental Science and Technology. 2011;4(3):234-249. doi: 10.3923/jest.2011.234.249
  55. Review of the dust-lead hazard standards and the definition of lead based paint. Federal Register. 2019;84(131):32632-32648.
  56. Sobhanardakani S. Human Health Risk Assessment of Cd, Cu, Pb and Zn through Consumption of Raw and Pasteurized Cow’s Milk. Iran J Public Health. 2018;47(8):1172-1180.
  57. Spears JW. Micronutrients and immune function in cattle. Proc Nutr Soc. 2000;59(4):587-594. doi: http://dx.doi.org/10.1017/S0029665100000835
  58. Tang Q, Li Y, Xu Y. Land suitability assessment for post-earthquake reconstruction: A case study of Lushan in Sichuan, China. Journal of Geographical Sciences. 2015;25(7):865-878. doi: https://doi.org/10.1007/s11442-015-1207-6
  59. Yasuda H, Yoshida K, Segawa M, Tokuda R, Yasuda Y, Tsutsui T. High accumulation of aluminium in hairs  of infants and children. Biomed Res Trace Elem. 2008;19(1):57-62. doi: https://doi.org/10.11299/brte.19.57
  60. Zhou Q, Teng Y, Liu Y. A study on soil-environmental quality criteria and standards of arsenic. Applied Geochemistry. 2017;77:158-166. doi: https://doi.org/10.1016/j.apgeochem.2016.05.001

Kazakova Tatyana Vitalyevna, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: vaisvais13@mail.ru

Marshinskaya Olga Vladimirovna, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: m.olja2013@yandex.ru

Miroshnikov Sergey Aleksandrovich, Dr. Sci (Biol.), RAS Corresponding Member, Director, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-70, e-mail: vniims.or@mail.ru

Notova Svetlana Viktorovna, Dr. Sci (Med.), Professor, First Deputy Director, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: snotova@mail.ru

Zavyalov Oleg Aleksandrovich, Cand. Sci. (Agr.), Senior Researcher, Department of Technology of Beef Cattle Breeding and Beef Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-78, e-mail: oleg-zavyalov83@mail.ru

Frolov Alexey Nikolaevich, Cand. Sci. (Agr.), Senior Researcher, Department of Technology for Beef Cattle Breeding and Beef Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-78, e-mail: forleh@mail.ru

Tyapugin Evgeniy Aleksandrovich, Dr. Sci (Biol.), Academician of the Russian Academy of Sciences, Chief Researcher at the Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, 29 9 Yanvarya St., 460000, Orenburg, Russia, e-mail: vniims.or@mail.ru

Received: 18 May 2020; Accepted: 15 June 2020; Published: 8 July 2020

Download