Gerasimov N.P, Kolpakov V.I, Kosyan D.B, Syromyatnikov M.Yu,Kwan O.V, Rusakova E.A.

DOI: 10.33284/2658-3135-103-3-114

UDC 636.22/.28.082.13:636.082.11

Acknowledgements:

Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0761-2019-0009)

Assessment of the relationship between postmortem qualities of cattle with the presence

of polymorphisms LEP 528C/T and LEP 73C/T

Nikolai P Gerasimov, Vladimir I Kolpakov, Dianna B Kosyan, Mikhail Yu Syromyatnikov,

Olga V Kwan, Elena A Rusakova

Federal Research Centre of Biological Systems and Agricultural Technologies of the Russian Academy of Sciences (Orenburg, Russia) Summary. Alleles of leptin genes can be considered as potential markers of milk and meat productivity in cattle due to their participation in energy homeostasis and reproductive regulation. The aim of our research was to assess the relationship between the slaughter qualities of cattle of the Aberdeen-Angus breed with the presence of the LEP 528C/T and LEP 73C/T polymorphisms. After genotyping, Aberdeen-Angus cows and heifers were grouped according to genotypes. Analyzing the LEP 528C/T polymorphism, a significant distribution of heterozygous individuals in the post-slaughter population was found both among young animals (50.0%) and among the aged contingent of broodstock (53.3%). The desired genotype (TT *) was found among cows in 10.0%, and among heifers - in 24.0%. The distribution of individual genotypes in relation to the LEP 73C / T gene polymorphism among all age and sex groups confirmed a significant proportion of heterozygous animals in the herd. Heterozygous genotypes of heifers with nucleotide substitutions in different regions were distinguished by an increased level of meat productivity. They exceeded their peers by 16.3-30.4 kg (3.01-5.76%; P≥0.05) and 9.1-14.2 kg (1.67-2.63%; P≥0,05) by pre-slaughter weight, and by carcass weight - by 8.3-9.8 kg (2.64-3.14%; P≥0.05) and 2.4-2.7 kg (0.76 -0.85%; P≥0.05), respectively, with LEP 528C/T and LEP 73C/T polymorphism. In turn, the desired mutation in homozygous form (TT) in the LEP 528C/T polymorphism in cows contributed to the maximum expression of live weight, weight and carcass yield in their carriers. In contrast, with respect to the LEP 73C/T polymorphism, cows with the TT genotype were characterized by the minimum performance indicators.

Key words: beef cattle, Aberdeen-Angus, cows, heifers, polymorphism, LEP, meat yield.

References

  1. Beyshova IS, Belaya EV, Terletsky VP, Chuzhebaeva GD, Krutikova AA. Analysis of productivity in groups of cows of the Auliekol and Kazakh white-head rocks with different genotypes of polymorphism BPIT-1-HINFI. Success of modern science and education. 2017;7(4):133-138.
  2. Kovalyuk NV, Satsuk VF, Volchenko AE, Machulskaya EV, Shahnazarova JJ. Using of polymorphism of the leptin locus in breeding of cattle of Ayrshire breed. Dairy and Beef Cattle Farming. 2014;6:13-15.
  3. Khabibrakhmanova YaA. Polymorphism of genes of milk proteins and hormones of cattle: author. dis. ... сand. biol. sciences. P. Lesnye Polyany; 2009:19 p.
  4. Adam A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR., Chakravarti A, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74. doi:10.1038/nature15393
  5. Aliloo H, Pryce JE, González-Recio O, Cocks BG, Hayes BJ. Validation of markers with non-additive effects on milk yield and fertility in Holstein and Jersey cows. BMC genetics. 2015;16(1):89. doi: 10.1186/s12863-015-0241-9
  6. Avilés C, Polvillo O, Pena F, Horcada A, Juarez M, Molina A. Association study between a SNP in bovine SCD1 gene with fatty acid composition in a spanish commercial population fed with two different diets. Animal Biotechnology. 2015;26(1):40-44.  doi: https://doi.org/10.1080/10495398. 2014.880712
  7. Broderick GA. Review: Optimizing ruminant conversion of feed protein to human food protein. Аnimal. 2018;12(8):1722-1734. doi: https://doi.org/10.1017/S1751731117002592
  8. Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet Sel Evol. 2002;34(1):105-116. doi: https://doi.org/10.1186/1297-9686-34-1-105
  9. Calus MPL, Bijma P, Veerkamp RF. Evaluation of genomic selection for replacement strategies using  selection  index  theory.  Journal  of  Dairy  Science. 2015;98(9):6499-6509. doi: https://doi.org/10.3168/jds.2014-9192
  10. Cao XK, Zhan ZY, Huang YZ, Lan XY, Lei CZ, Qi XL, Chen H. Variants and haplotypes within MEF2C gene influence stature of chinese native cattle including body dimensions and weight. Livest. Sci. 2016;185:106-109. doi: https://doi.org/10.1016/j.livsci.2016.01.008
  11. Carruthers CR, Plante Y, Schmutz SM. Comparison of Angus cattle populations using gene variants and microsatellites. Canadian Journal of Animal Science. 2011;91(1):81-85. doi: https://doi.org/10.1139/CJAS10058
  12. Carvalho ThD, Siqueira F, Torres Júnior RAA, Raposo de Medeiros S, Dias Feijó GL, Dorta De Souza Junior M, Zaidan Blecha IM and Soares CO. Association of polymorphisms in the leptin and thyroglobulin genes with meat quality and carcass traits in beef cattle. Rev. Bras Zootec. 2012;41(10):2162-2168. doi: https://doi.org/10.1590/S1516-35982012001000004
  13. Coleman LW, Hickson RE, Schreurs NM, Martin NP, Kenyon PR, Lopez-Villalobos N, Morris ST. Carcass characteristics and meat quality of Hereford sired steers born to beef-cross-dairy and Angus breeding cows. Meat Science. 2016;121:403-408. doi: https://doi.org/10.1016/j.meatsci.2016.07.011
  14. Durán Aguilar M, Román Ponce SI, Ruiz López FJ, González Padilla E. Genome‐wide association study for milk somatic cell score in holstein cattle using copy number variation as markers. Journal of Animal Breeding and Genetics. 2017;134(1):49-59. doi: https://doi.org/10.1111/jbg.12238
  15. Duru S, Sak H. Türkiye’de besiye alınan simmental, aberdeen angus, hereford, limousin ve charolais irkı sığırların besi performansı ve karkas özellikleri. Turkish Journal of Agriculture - Food Science and Technology. 2017;5(11):1383-1388. doi: https://doi.org/10.24925/turjaf.v5i11.1383-1388.1485
  16. Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM, et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Journal of dairy science. 2012;95(7):4114-4129. doi: https://doi.org/ 10.3168/ jds.2011-5019
  17. Fan Y, Wang P,  Fu W,  Dong T, Qi C, Liu L,  Guo G,  Li C,  Cui X, Zhang S, Zhang Q,  Zhang Y,  Sun D. Genome‐wide association study for pigmentation traits in Chinese Holstein population. Animal genetics. 2014; 45(5):740-744. doi: https://doi.org/10.1111/age.12189
  18. Geburt K, Friedrich M, Piechotta M, Gauly M, von Borstel UK. Validity of physiological biomarkers for maternal behavior in cows ̶ A comparison of beef and dairy cattle. Physiology & behavior. 2015;139:361-368. doi: https://doi.org/10.1016/j.physbeh.2014.10.030
  19. Giblin L, Stephen TB, Breda MK, Sinead MW, Michael JC, Donagh PB. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires. BMC Genetics.2010;11:73. doi: 10.1186/1471-2156-11-73
  20. Greguła-Kania M. Effect of calpastatin gene polymorphism on lamb growth and muscling. Annals of Animal Science. 2012;12(1):63-72. doi: https://doi.org/10.2478/v10220-012-0005-7
  21. Guarini AR, Lourenco DAL, Brito LF, Sargolzaei M, Baes CF, Miglior F, Misztal I. Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased   predictor   in   Holstein   cattle.  Journal   of   Dairy   Science. 2018;101(9):8076-8086. doi: https://doi.org/10.3168/jds.2017-14193
  22. Hoppe S, Brandt HR, König S, Erhardt G, Gauly M. Temperament traits of beef calves measured under field conditions and their relationships to performance. J Anim Sci. 2010;88(6):1982-1989. doi: https://doi.org/10.2527/jas.2008-1557
  23. Kmieć M, Kulig H, Wierzbicki H. Polymorphismus im leptin-gen in verbindung mit ausgewählten reproduktions-leistungen von ebern. Tierarztliche Umschau. 2006;61(2):77-83.
  24. Komisarek J. Impact of LEP and LEPR gene polymorphismson functional traits in Polish Holstein-Friesian cattle. Animal Science Papers and Reports. 2010;28:133-141.
  25. Kruhliak OV. Genetic resources of dairy cattle breeding in Ukraine. Economy of AIC. 2018;1:33-39.
  26. Li X, Bykhovskaya Y, Tang YG, Picornell Y, Haritunians T, Aldave AJ, Rabinowitz YS et al. An association between the calpastatin (CAST) gene and keratoconus. Cornea. 2013; 32(5):696-701. doi: 10.1097/ICO.0b013e3182821c1c
  27. Lourenco DAL, Misztal I, Tsuruta S, Aguilar I, Ezra E, Ron M et al. Methods for genomic evaluation of a relatively small genotyped dairy population and effect of genotyped cow information in multiparity analyses. Journal of Dairy Science. 2014;97(3):1742-1752. doi: https://doi.org/10.3168/ jds.2013-6916
  28. Malchiodi F, Koeck A, Mason S, Christen AM, Kelton DF, Schenkel FS, Miglior F. Genetic parameters for hoof health traits estimated with linear and threshold models using alternative cohorts. Journal of Dairy Science. 2017;100(4):2828-2836. doi: https://doi.org/10.3168/jds.2016-11558
  29. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F. The ensembl variant effect predictor. Genome biology. 2016;17(1):122. doi: 10.1186/s13059-016-0974-4
  30. Negussie E, de Haas Y, Dehareng F, Dewhurst RJ, Dijkstra J, Gengler N,  Morgavi DP, SoyeurtH,  van GastelenS, Yan T, Biscarini F. Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions. Journal of Dairy Science. 2017;100(4):2433-2453. doi: https://doi.org/10.3168/jds.2016-12030
  31. Nkrumah JD, Li C, Yu J, Hansen C, Keisler DH, Moore SS. Polymorphism in the bovine leptin gene promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. J. Anim. Sci. 2005;83(1):20-28.doi: https://doi.org/10.2527/2005.83120x
  32. Perez BC, BalieiroJulio CC, Carvalheiro R, Tirelo F, Gerson AOJ,  Dementshuk JM, Eler JP,  Ferraz JBS,  Ventura RV. Accounting for population structure in selective cow genotyping strategies. Journal of Animal Breeding and Genetics. 2019;136(1):23-39. doi: https://doi.org/10.1111/jbg.12369
  33. Pico JGG. Estudio zootécnico de la Neosporosis bovina: análisis teórico de orientación para los ganaderos de Santander y Boyacá. Universidad Nacional Abierta Y A Distancia – UNAD;2016:74 p.
  34. Price MA. Species of meat animals: Cattle. Encyclopedia of Meat Sciences, eds. Dikeman M, Devine C. Academic Press; 2014:328-335. doi: https://doi.org/10.1016/B978-0-12-384731-7.00077-5
  35. Rojas Canadas E, Gobikrushanth M, Fernandez P, Kenneally J, Lonergan P, Butler ST. Evaluation of alternative strategies to treat anoestrous dairy cows and implications for reproductive performance in pasture-based seasonal calving herds: A pilot study. Theriogenology. 2019;127:130-136. doi: https://doi.org/10.1016/j.theriogenology.2019.01.008
  36. Šavc M, Duane M, O'Grady LE, Somers JR, Beltman ME. Uterine disease and its effect on subsequent reproductive performance of dairy cattle: a comparison of two cow-side diagnostic methods. Theriogenology. 2016;86(8):1983-1988. doi: https://doi.org/10.1016/j.theriogenology.2016.06.018
  37. Szyda J et al. Evaluating markers in selected genes for association with functional longevity of dairy cattle. BMC Genetics. 2011;12:30.
  38. Thomasen JR, Sorensen AC, Lund MS, Guldbrandtsen B. Adding cows to the reference population makes a small dairy population competitive. Journal of Dairy Science. 2014;97(9):5822-5832. doi: https://doi.org/10.3168/jds.2014-7906
  39. Tizioto PC, Meirelles SL, Veneroni GB, Tullio RR, Rosa AN, Alencar MM, Medeiros SR, Siqueira F, Feijó GLD, Silva LOC, Torres Junior RAA, Regitano LCA. A SNP in ASAP1 gene is associated with meat quality and production traits in Nelore breed. Meat science. 2012;92(4):855-857. doi: https://doi.org/10.1016/j.meatsci.2012.05.018
  40. Volkandari SD, Nadila A, Radiastuti N,  Margawati ET. Genetic polymorphism of calpastatin (CAST) gene in pasundan cattle. Buletin Peternakan. 2018;42(4):262-266. doi: 10.21059/buletinpeternak. v42i4.35338
  41. Wientjes YCJ, Calus MPL,  GoddardME, Hayes BJ. Impact of QTL properties on the accuracy  of  multi-breed  genomic  prediction.  Genetics  Selection Evolution. 2015;47(1):42. doi: https://doi.org/10.1186/s12711-015-0124-6
  42. Xu L, Hou Y, Bickhart DM,  Zhou Y,  Hay EH abdel,  Song J, Sonstegard TS,  Van TassellCP, Liu GE. Population-genetic properties of differentiated copy number variations in cattle. Scientific reports. 2016;6:23161. doi: https://doi.org/10.1038/srep23161
  43. Yu L, Jin W, Zhang X, Wang D, Zheng J, Yang G, Xu Sh, Cho S, Zhang Y. Evidence for Positive Selection on the leptin gene  in  cetacea  and  pinnipedia.  Plos One. 2011;6(10):e26579. doi: https://doi.org/10.1371/journal.pone.0026579

Gerasimov Nikolay Pavlovich, Cand. Sci. (Agr.), Senior Researcher, Beef Cattle Breeding Department, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29 9 Yanvarya St., cell: 89123589617, e-mail: nick.gerasimov@rambler.ru

Kolpakov Vladimir Ivanovich, Cand. Sci (Agr.), Researcher at the Beef Cattle Breeding Laboratory, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29 9 Yanvarya St., tel.: 8(3532)30-81-74; e-mail: vkolpakov056@yandex.ru

Kosyan Dianna Bagdasarovna, Cand. Sci. (Biol.), I.O. Head of the Laboratory of Selection and Genetic Research in Livestock Breeding, Federal Research Centre of Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, 460000, Orenburg, 29 9 Yanuarya st., tel .: +79228448915, e-mail: kosyan.diana@mail.ru

Syromyatnikov Mikhail Yurievich, Cand. Sci. (Biol.), Federal Research Centre for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, 460000, Orenburg, 29 9 Yanuarya st., e-mail: mihan.vrn@mail.ru

Kvan Olga Vilorievna, Cand. Sci. (Biol.), Senior Researcher of the Department of Feeding Farm Animals and Feed Technology named after S.G. Leushin, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29 9 Yanvarya St., tel.: +79225485657, e-mail: kwan111@yandex.ru

Rusakova Elena Anatolyevna, Cand. Sci. (Biol.), Senior Researcher, Molecular Genetic Laboratory, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., e-mail: elenka_rs@mail.ru

Поступила в редакцию 11 сентября 2020 г.; принята после решения редколлегии 14 сентября 2020 г.;

опубликована 30 сентября 2020 г. / Received: 11 September 2020; Accepted: 14 September 2020;

Published: 30 September 2020

Download