Tarasova E.I, Notovа S.V.

DOI: 10.33284/2658-3135-103-3-58

UDC 636.22/28:636.088.5:575.113


Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0526-2019-0001)

Gene markers of the productive characteristics of dairy cattle (review)

Ekaterina I Tarasova, Svetlana V Notovа

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. The most economically important productive characteristics that contribute to the development of the dairy industry are milk yield, milk fat and protein production, as well as the percentage of these indicators. In recent years, cattle breeding programs based on molecular genetic research methods have attracted great attention. The strategy of the candidate gene allows you to focus the analysis on specific genes involved in key metabolic pathways or physiological processes that can affect the features of interest. The main ones are genes encoding proteins and participating in lactation processes, as well as genes that regulate these processes. The review provides a brief description of the genes encoding caseins of milk, the polymorphisms of which affect the protein and fat content in milk, which has an important role in the production of cheese. Genes encoding factors governing the expression of milk protein are also described. These include prolactin, which affects milk yield, growth hormone, which plays a key role in lactation, diacylglycerol-acyltransferase 1, which is a key enzyme for the synthesis of triacylglycerols, the main fraction of milk fat, leptin, which is involved in the regulation of prolactin secretion, and some others.

Key words: cattle, milk productivity, marker genes, milk caseins, whey proteins, prolactin, leptin, growth hormone, diacylglycerol acyltransferase 1.


  1. Dolmatova IYu, Gareeva I, Iliysov А Effects of genetic variants of beta-lactoglodulin gene in cattle milk production. Vestnik of the Bashkir State Agrarian University.2010;1:18-22.
  2. Dolmatova IYu, Ilyasov А Association of cattle growth hormone gene polymorphism with milk productivity. Russian Journal of Genetics. 2011;47(6):814-820. doi: 10.1134/S1022795411060081
  3. Shevtsova AA, Klimov EA, Kovalchuk SN. Review  of  genes  variability  associated  with  milk   productivity  of dairy  cattle.International journal of applied and fundamental research. 2018;11:194-200. doi: 10.17513/mjpfi.12475
  4. Abdolmohammadi A, Zamani P. SNP exploring in the middle and terminal regions of the IGF-1 gene and association with production and reproduction traits in Holstein cattle. Gene. 2014;540(1):92-95. doi:10.1016/j.gene.2014.02.011
  5. Ahmed AS, Rahmatalla S, Bortfeldt R, Arends D, Reissmann M, Brockmann GA. Milk protein polymorphisms  and  casein  haplotypes  in  Butana  J Appl Genet. 2017;58(2):261‐271. doi: 10.1007/s13353-016-0381-2
  6. Akis I, Oztabak K, Gonulalp I, Mengi A, Un C. IGF-1 and IGF-1r gene polymorphisms in East Anatolian Red and South Anatolian Red cattle breeds. Genetika. 2010;46(4):497‐
  7. Argetsinger LS, Campbell GS, Yang X et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 1993;74(2):237-244. doi:10.1016/0092-8674(93)90415-m
  8. Argov-Argaman N, Mida K, Cohen BC, Visker M, Hettinga K. Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane. PLoS One. 2013;8(7):e68707. doi: 1371/journal.pone.0068707
  9. Armstrong DG, Webb R. Ovarian follicular dominance: the role of intraovarian growth factors and novel proteins. Rev Reprod. 1997;2(3):139-146. doi: 10.1530/ror.0.0020139
  10. Balteanu VA, Carsai TC, Vlaic A. Identification of an intronic regulatory mutation at the buffalo αS1-casein  gene  that  triggers  the skipping of exon 6. Mol Biol Rep. 2013;40(7):4311‐ doi: 10.1007/s11033-013-2518-2
  11. Barbosa da Silva MV, Sonstegard TS, Thallman RM, Connor EE, Schnabel RD, Van Tassell CP. Characterization of DGAT1 allelic effects in a sample of North American Holstein cattle. Anim Biotechnol. 2010;21(2):88‐ doi: 10.1080/10495390903504625
  12. Bennewitz J, Reinsch N, Paul S et al. The DGAT1 K232A mutation is not solely responsible for the milk production quantitative trait locus on the bovine chromosome 14. J Dairy Sci. 2004;87(2):431‐ doi: 10.3168/jds.s0022-0302(04)73182-3
  13. Blott S, Kim JJ, Moisio S et al. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics. 2003;163(1):253‐
  14. Blum WF, Alherbish A, Alsagheir A et al. The growth hormone-insulin-like growth factor-I axis  in the diagnosis and treatment of growth disorders. Endocr Connect. 2018;7(6):R212-R222. doi: 10.1530/EC-18-0099
  15. Bonfatti V, Di Martino G, Cecchinato A, Degano L, Carnier P. Effects of β-k-casein (CSN2-CSN3) haplotypes, β-lactoglobulin (BLG) genotypes, and detailed protein  composition  on coagulation   properties   of   individual   milk  of Simmental    J  Dairy  Sci.  2010a;93(8):3809‐3817. doi: 10.3168/jds.2009-2779
  16. Bonfatti V, Di Martino G, Cecchinato A, Vicario D, Carnier P. Effects of β-k-casein (CSN2-CSN3) haplotypes  and  β-lactoglobulin (BLG)  genotypes on milk production  traits  and  detailed protein composition of individual milk of Simmental cows. J Dairy Sci. 2010b;93(8):3797‐ doi: 10.3168/jds.2009-2778
  17. Bovenhuis H, Visker MHPW, Poulsen NA et al. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. J Dairy Sci. 2016;99(4):3113‐ doi: 10.3168/jds.2015-10462
  18. Braunschweig M, Hagger C, Stranzinger G, Puhan Z. Associations between casein haplotypes and   milk   production   traits   of   Swiss  Brown    J  Dairy  Sci.  2000;83(6):1387‐1395. doi: 10.3168/jds.S0022-0302(00)75007-7
  19. Caroli A, Chessa S, Chiatti F et al. Short communication: Carora cattle show high variability in alpha(s1)-casein. J Dairy Sci. 2008;91(1):354‐ doi: 10.3168/jds.2007-0420
  20. Caroli A, Rizzi R, Lühken G, Erhardt G. Short communication: milk protein genetic variation and casein haplotype structure in the Original Pinzgauer cattle. J Dairy Sci. 2010;93(3):1260‐ doi: 10.3168/jds.2009-2521
  21. Cecchinato A, Ribeca C, Maurmayr A et al. Short communication: Effects of β-lactoglobulin, stearoyl-coenzyme A desaturase 1, and sterol regulatory element binding protein gene allelic variants on milk production, composition, acidity, and coagulation properties of Brown Swiss cows. J Dairy Sci. 2012;95(1):450‐ doi: 10.3168/jds.2011-4581
  22. Cole JB, Wiggans GR, Ma L et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics. 2011;12:408. doi: 10.1186/1471-2164-12-408
  23. Connor EE, Ashwell MS, Dahl GE. Characterization and expression of the bovine growth hormone-releasing hormone   (GHRH)      Domest   Anim  Endocrinol. 2002;22(4):189‐200. doi: 10.1016/s0739-7240(02)00129-7
  24. Conte G, Mele M, Chessa S et al. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J Dairy Sci. 2010;93(2):753‐ doi: 10.3168/jds.2009-2581
  25. Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10(1):68‐ doi:10.1210/edrv-10-1-68
  26. Deng F, Xia C, Jia X et al. Comparative study on the genetic diversity of GHR gene in tibetan cattle and holstein cows. Anim Biotechnol. 2015;26(3):217‐ doi: 10.1080/10495398.2014.993082
  27. Do DN, Bissonnette N, Lacasse P et al. Genome-wide association analysis and pathways enrichment for   lactation  persistency  in  Canadian  Holstein  J Dairy Sci. 2017;100(3):1955‐1970. doi: 10.3168/jds.2016-11910
  28. Dong CH, Song XM, Zhang L, Jiang JF, Zhou JP, Jiang YQ. New insights into the prolactin-RsaI (PRL-RsaI) locus in Chinese Holstein cows and its effect on milk performance traits.Genet Mol Res. 2013;12(4):5766‐ doi: 10.4238/2013.November.22.3
  29. Egger-Danner C, Cole JB, Pryce JE et al. Invited review: overview of new traits and phenotyping strategies  in  dairy  cattle  with  a  focus  on  functional    Animal. 2015;9(2):191‐207. doi: 10.1017/S1751731114002614
  30. El-Domany WB, Radwan HA, Ateya AI, Ramadan HH, Marghani BH, Nasr SM. Genetic Polymorphisms in LTF/EcoRI and TLR4/AluI loci as candidates for milk and reproductive performance assessment in Holstein cattle. Reprod Domest Anim. 2019;54(4):678‐ doi: 10.1111/rda.13408
  31. Falaki M, Prandi A, Corradini C et al. Relationships of growth hormone gene and milk protein polymorphisms  to  milk  production traits in Simmental cattle. J Dairy Res. 1997;64(1):47‐ doi: 10.1017/s0022029996001872
  32. Fontanesi L, Calò DG, Galimberti G et al. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Anim Genet. 2014;45(4):576‐ doi: 10.1111/age.12164
  33. Gautier M, Capitan A, Fritz S, Eggen A, Boichard D, Druet T. Characterization of the DGAT1 K232A and variable number of tandem repeat polymorphisms in French dairy cattle. J Dairy Sci. 2007;90(6):2980‐ doi: 10.3168/jds.2006-707
  34. Ge W, Davis ME, Hines HC, Irvin KM. Rapid communication: Single nucleotide polymorphisms detected in exon 10 of the bovine growth hormone receptor gene. J Anim Sci. 2000;78(8):2229‐ doi: 10.2527/2000.7882229x
  35. Giblin L, Butler ST, Kearney BM, Waters SM, Callanan MJ, Berry DP. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires. BMC Genet. 2010;11:73. doi: 10.1186/1471-2156-11-73
  36. Grisart B, Coppieters W, Farnir F et al. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12(2):222‐ doi: 10.1101/gr.224202
  37. Grisart B, Farnir F, Karim L et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. PNAS. 2004;101(8):2398‐ doi: 10.1073/pnas.0308518100
  38. Grochowska R, Sørensen P, Zwierzchowski L, Snochowski M, Løvendahl P. Genetic variation in stimulated GH release and in IGF-I of young dairy cattle and their associations with the leucine/valine polymorphism in the GH gene. J Anim Sci. 2001;79(2):470‐ doi: 10.2527/2001.792470x
  39. Grochowska R, Zwierzchowski L, Snochowski M, Reklewski Z. Stimulated growth hormone (GH) release in Friesian cattle with respect to GH genotypes. Reprod Nutr Dev. 1999;39(2):171‐ doi: 10.1051/rnd:19990202
  40. Grossi DdoA, Buzanskas ME, Grupioni NV et al. Effect of IGF1, GH, and PIT1 markers on the genetic parameters of growth and reproduction traits in Canchim cattle. Mol Biol Rep. 2015;42(1):245‐ doi: 10.1007/s11033-014-3767-4
  41. Hayes BJ, Lewin HA, Goddard ME. The future of livestock breeding: genomic selection for efficiency,  reduced  emissions  intensity, and adaptation. Trends Genet. 2013;29(4):206‐ doi: 10.1016/j.tig.2012.11.009
  42. He X, Chu MX, Qiao L et al. Polymorphisms of STAT5A gene and their association with milk production traits in Holstein cows. Mol Biol Rep. 2012;39(3):2901-2907. doi: 10.1007/s11033-011-1051-4
  43. Heidari M, Azari MA, Hasani S, Khanahmadi A, Zerehdaran S. Effect of polymorphic variants of GH, Pit-1, and beta-LG genes on milk production of Holstein cows. Genetika. 2012;48(4):503-507.
  44. Huang W, Peñagaricano F, Ahmad KR, Lucey JA, Weigel KA, Khatib H. Association between milk protein gene variants and protein composition traits in dairy cattle. J Dairy Sci. 2012;95(1):440‐ doi: 10.3168/jds.2011-4757
  45. Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999;20(6):761-787. doi: 10.1210/edrv.20.6.0382
  46. Ikonen T, Bovenhuis H, Ojala M, Ruottinen O, Georges M. Associations between casein haplotypes and first lactation milk production traits in Finnish Ayrshire cows. J Dairy Sci. 2001;84(2):507‐ doi: 10.3168/jds.S0022-0302(01)74501-8
  47. Jiang L, Liu J, Sun D et al. Genome wid e association studies for milk production traits in Chinese Holstein population. PLoS One. 2010;5(10):e13661. doi: 10.1371/journal.pone.0013661
  48. Johnson MA, Firth SM. IGFBP-3: a cell fate pivot in cancer and disease. Growth Horm IGF Res. 2014;24(5):164-173. doi: 10.1016/j.ghir.2014.04.007
  49. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3-34. doi: 10.1210/edrv-16-1-3
  50. Kasuya E. Secretory pattern and regulatory mechanism of growth hormone in cattle. Anim Sci J. 2016;87(2):178‐ doi: 10.1111/asj.12418
  51. Kaupe B, Brandt H, Prinzenberg EM, Erhardt G. Joint analysis of the influence of CYP11B1 and DGAT1 genetic  variation  on  milk  production,  somatic  cell  score, conformation, reproduction,   and   productive   lifespan   in   German  Holstein  J  Anim  Sci. 2007;85(1):11‐21. doi: 10.2527/jas.2005-753
  52. Komatsu M, Kojima M, Okamura H et al. Age-related changes in gene expression of the growth hormone secretagogue and growth hormone-releasing hormone receptors in Holstein-Friesian cattle. Domest Anim Endocrinol. 2012;42(2):83‐ doi: 10.1016/j.domaniend.2011.09.006
  53. Kuehn C, Edel C, Weikard R, Thaller G. Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGAT1) gene on milk production traits in German Holstein cows. BMC Genet.2007;8:62. doi: 10.1186/1471-2156-8-62
  54. Kühn C, Thaller G, Winter A et al. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics. 2004;167(4):1873-1881. doi: 10.1534/genetics.103.022749
  55. Lacasse P, Lollivier V, Dessauge F, Bruckmaier RM, Ollier S, Boutinaud M. New developments on the galactopoietic role of prolactin in dairy ruminants. Domest Anim Endocrinol. 2012;43(2):154‐ doi: 10.1016/j.domaniend.2011.12.007
  56. Lacasse P, Ollier S, Lollivier V, Boutinaud M. New insights into the importance of prolactin in dairy ruminants. J Dairy Sci. 2016;99(1):864‐ doi: 10.3168/jds.2015-10035
  57. Lacasse P, Ollier S. The dopamine antagonist domperidone increases prolactin concentration and enhances milk production in dairy cows. J Dairy Sci. 2015;98(11):7856‐ doi: 10.3168/jds.2015-9865
  58. Lacorte GA, Machado MA, Martinez ML et al. DGAT1 K232A polymorphism in Brazilian cattle breeds. Genet Mol Res. 2006;5(3):475‐
  59. Lü A, Hu X, Chen H, Dong Y, Pang Y. Single nucleotide polymorphisms of the prolactin receptor (PRLR) gene and its association with growth traits in Chinese cattle. Mol Biol Rep. 2011a;38(1):261‐ doi: 10.1007/s11033-010-0103-5
  60. Lü A, Hu X, Chen H, Dong Y, Zhang Y, Wang X. Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem Genet. 2011b;49(3-4):177‐ doi: 10.1007/s10528-010-9397-1
  61. Mai MD, Sahana G, Christiansen FB, Guldbrandtsen B. A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip. J Anim Sci. 2010;88(11):3522‐ doi: 10.2527/jas.2009-2713
  62. Maj A, Snochowski M, Siadkowska E et al. Polymorphism in genes of growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF1) and its association with both the IGF1 expression in liver and its level in blood in Polish Holstein-Friesian cattle. Neuro Endocrinol Lett. 2008;29(6):981‐
  63. Martens N, Uzan G, Wery M, Hooghe R, Hooghe-Peters EL, Gertler A. Suppressor of cytokine signaling 7 inhibits prolactin, growth hormone, and leptin signaling by interacting with STAT5 or STAT3 and attenuating their nuclear translocation. J Biol Chem. 2005; 280(14):13817‐ doi: 10.1074/jbc.M411596200
  64. Martinelli CE Jr, Custódio RJ, Aguiar-Oliveira MH. Fisiologia do eixo GH-sistema IGF [Physiology of the GH-IGF axis]. Arq Bras Endocrinol Metabol. 2008;52(5):717-725. doi: 10.1590/s0004-27302008000500002
  65. Maxa J, Neuditschko M, Russ I, Förster M, Medugorac I. Genome-wide association mapping of  milk  production  traits  in  Braunvieh  J Dairy Sci. 2012;95(9):5357‐5364. doi: 10.3168/jds.2011-4673
  66. Metin Kiyici J, Akyüz B, Kaliber M, Arslan K, Aksel EG, Çinar MU. LEP and SCD polymorphisms are associated with milk somatic cell count, electrical conductivity and pH values in Holstein cows. Anim Biotechnol. 2019;1‐ doi: 10.1080/10495398.2019.1628767
  67. Miglior F, Fleming A, Malchiodi F, Brito LF, Martin P, Baes CF. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J Dairy Sci. 2017;100(12):10251‐ doi: 10.3168/jds.2017-12968
  68. Miluchová M, Gábor M, Candrák J, Trakovická A, Candráková K. Association of HindIII-polymorphism in kappa-casein gene with milk, fat and protein yield in holstein cattle. Acta Biochim Pol. 2018;65(3):403‐ doi: 10.18388/abp.2017_2313
  69. Moisio S, Elo K, Kantanen J, Vilkki J. Polymorphism within the 3' flanking region of the bovine growth hormone receptor gene. Anim Genet. 1998;29(1):55‐ doi: 10.1046/j.1365-2052.1998.00254.x
  70. Molee A, Boonek L, Rungsakinnin N. The effect of beta and kappa casein genes on milk yield and milk composition in different percentages of Holstein in crossbred dairy cattle. Anim Sci J. 2011;82(4):512‐ doi: 10.1111/j.1740-0929.2011.00879.x
  71. Näslund J, Fikse WF, Pielberg GR, Lundén A. Frequency and effect of the bovine acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. J Dairy Sci. 2008;91(5):2127‐ doi: 10.3168/jds.2007-0330
  72. Neamt RI, Saplacan G, Acatincai S, Cziszter LT, Gavojdian D, Ilie DE. The influence of CSN3 and LGB polymorphisms on milk production and chemical composition in Romanian Simmental cattle. Acta Biochim Pol. 2017;64(3):493‐ doi: 10.18388/abp.2016_1454
  73. Nielsen HM, Christensen LG, Odegård J. A method to define breeding goals for sustainable dairy cattle production. J Dairy Sci. 2006;89(9):3615‐ doi: 10.3168/jds.S0022-0302(06)72401-8
  74. O'Halloran F, Berry DP, Bahar B, Howard DJ, Sweeney T, Giblin L. Polymorphisms in the bovine lactoferrin promoter are associated with reproductive performance and somatic cell count. J Dairy Sci. 2010;93(3):1253-1259. doi: 10.3168/jds.2009-2699
  75. Patel JB, Chauhan JB. Polymorphism of the prolactin gene and its relationship with milk production  in  gir  and kankrej cattle. J Nat Sci Biol Med. 2017;8(2):167‐ doi: 10.4103/jnsbm.JNSBM_303_16
  76. Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev. 2004;15(6):435‐ doi: 10.1016/j.cytogfr.2004.09.001
  77. Poulsen NA, Bertelsen HP, Jensen HB et al. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds. J Dairy Sci. 2013;96(8):4830-4842. doi: 10.3168/jds.2012-6422
  78. Pretto D, De Marchi M, Penasa M, Cassandro M. Effect of milk composition and coagulation traits on Grana Padano cheese yield under field conditions. J Dairy Res. 2013;80(1):1‐ doi: 10.1017/S0022029912000453
  79. Ranke MB. Insulin-like growth factor binding-protein-3 (IGFBP-3). Best Pract Res Clin Endocrinol Metab. 2015;29(5):701-711. doi: 10.1016/j.beem.2015.06.003
  80. Raschia MA, Nani JP, Maizon DO, Beribe MJ, Amadio AF, Poli MA. Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein x Jersey cows. J Anim Sci Technol. 2018;60:31. doi: 10.1186/s40781-018-0189-1
  81. Rhoads ML, Meyer JP, Kolath SJ, Lamberson WR, Lucy MC. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows. J Dairy Sci. 2008;91(5):1802-1813. doi: 10.3168/jds.2007-0664
  82. Sanchez MP, Govignon-Gion A, Ferrand M et al. Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds. J Dairy Sci. 2016;99(10):8203‐ doi: 10.3168/jds.2016-11437
  83. Shi L, Liu L, Lv X et al. Polymorphisms and genetic effects of PRLR, MOGAT1, MINPP1 and  CHUK  genes on milk fatty acid traits in Chinese Holstein. BMC Genet. 2019;20(1):69. doi: 10.1186/s12863-019-0769-1
  84. Singh LV, Jayakumar S, Sharma A et al. Comparative screening of single nucleotide polymorphisms in β-casein and κ-casein gene in different livestock breeds of India. Meta Gene. 2015;4:85‐ doi: 10.1016/j.mgene.2015.03.005
  85. Sodhi M, Mukesh M, Mishra BP, Parvesh K, Joshi BK. Analysis of genetic variation at the prolactin-RsaI (PRL-RsaI) locus in Indian native cattle breeds (Bos indicus). Biochem Genet. 2011;49(1-2):39‐ doi: 10.1007/s10528-010-9383-7
  86. Tsiaras AM, Bargouli GG, Banos G, Boscos CM. Effect of kappa-casein and beta-lactoglobulin loci on milk production traits and reproductive performance of Holstein cows. J Dairy Sci. 2005;88(1):327‐ doi: 10.3168/jds.S0022-0302(05)72692-8
  87. Uddin RM, Babar ME, Nadeem A et al. Genetic analysis of prolactin gene in Pakistani cattle. Mol Biol Rep. 2013;40(10):5685‐ doi: 10.1007/s11033-013-2670-8
  88. Varvio SL, Iso-Touru T, Kantanen J et al. Molecular anatomy of the cytoplasmic domain of bovine growth hormone receptor, a quantitative trait locus. Proc Biol Sci. 2008;275(1642):1525‐ doi: 10.1098/rspb.2008.0181
  89. Viale E, Tiezzi F, Maretto F, De Marchi M, Penasa M, Cassandro M. Association of candidate gene polymorphisms with milk technological traits, yield, composition, and somatic cell score in Italian Holstein-Friesian sires. J Dairy Sci. 2017;100(9):7271‐ doi: 10.3168/jds.2017-12666
  90. Wei J, Wagner S, Lu D et al. Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Sci Rep. 2015;5:11735. doi: 10.1038/srep11735
  91. Winter A, Krämer W, Werner FAO et al. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait   locus   for   milk  fat    Proc  Natl  Acad  Sci USA. 2002;99(14):9300‐9305. doi: 10.1073/pnas.142293799
  92. Wojdak-Maksymiec K, Szyda J, Strabel T. Parity-dependent association between TNF-α and LTF  gene  polymorphisms  and  clinical  mastitis  in  dairy  BMC Vet Res. 2013;9:114. doi: 10.1186/1746-6148-9-114
  93. Zabolewicz T, Barcewicz M, Brym P, Puckowska P, Kamiński S. Association of polymorphism within LTF gene promoter with lactoferrin concentration in milk of Holstein cows. Pol J Vet Sci. 2014;17(4):633‐ doi:10.2478/pjvs-2014-0094
  94. Zepeda-Batista JL, Saavedra-Jiménez LA, Ruíz-Flores A, Núñez-Domínguez R, Ramírez-Valverde R. Potential influence of κ-casein and β-lactoglobulin genes in genetic association studies of milk quality traits. Asian-Australas J Anim Sci. 2017;30(12):1684‐ doi: 10.5713/ajas.16.0481
  95. Zhang B, Zhao G, Lan X, Lei C, Zhang C, Chen H. Polymorphism in GHRH gene and its association with  growth  traits  in  Chinese  native  Res Vet Sci. 2012;92(2):243‐246. doi: 10.1016/j.rvsc.2011.01.023

Tarasova Ekaterina Ivanovna, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: ekaterina45828@mail.ru

Notova Svetlana Viktorovna, Dr. Sci (Med.), Professor, First Deputy Director, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, Russia, 460000, e-mail: snotova@mail.ru

Received: 21 August 2020; Accepted: 14 September 2020; Published: 30 September 2020