Vladimir I Kolpakov

DOI: 10.33284/2658-3135-103-4-47

UDC 636.088.31


Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0761-2019-0009)

Influence of some polymorphic genes on meat productivity and meat quality of cattle (review)

Vladimir I Kolpakov

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. The article provides an overview of foreign and domestic researches on study of polymorphisms of candidate genes that determine meat and milk productivity, quality of cattle meat: LEP, CAPN1, CAST, DGAT1, FABP4, RORC, SCD, 1СSN3, PRL, BLG, TNF-α and others. The use of informative data of DNA markers allows selection at an early age, and also characterizes the polygenic nature of inheritance. The choice of genetic markers depends on the frequency distribution of genes, genetic distance between breeds and the presence of particular alleles. Nowadays, selection based on DNA markers of beef cattle productivity has begun to be introduced into the practice of selection and breeding work. Analysis of the genetic diversity of ecological and genetic groups using erythrocyte antigenic factors and DNA markers will provide objective control over selection process and determine its further direction.

Key words: cattle, selection, single nucleotide polymorphism, DNA markers, meat productivity, meat quality.


  1. Beyshova IS, Belaya EV, Terletsky VP, Chuzhebaeva GD, Krutikova AA. Analysis of productivity in groups of cows of auliekol and kazakh white-head rocks with different genotypes of polymorphism BPIT-1-HINFI. Success of Modern Science and Education. 2017a;7(4):133-138.
  2. Beyshova IS, Belaya EV, Usenbekov ES, Terletskiy VP, Krutikova AA, Poddudinskaya TV. Genetic population structure bulls-producing cows auliekol and kazakh white rocks polymorphic gene variants BPIT-1, BGH, BGHR. Modern Science Success. 2017b;9(3):37-42.
  3. Trukhachev VI, Selionova MI, Krivoruchko AYu, Aibasov AMM. Genetic markers of meat productivity of sheep (Ovis aries L.). I. myostatin, calpain, calpastatin (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology]. 2018;53(6):1107-1119. doi: 10.15389/agrobiology.2018.6.1107eng
  4. Kosyan DB, Surundaeva LG, Mayevskaya LA, Rusakova YeA, Kvan OV. Using PCR for genotyping cattle by CAPN1 gene using genetic markers. Vestnik of the Orenburg State University.2012;6:26-30.
  5. Gorlov IF, Fedunin AA, Sulimova GE, Randelin DA. Polymorphisms of bGH, RORC, and DGAT1 genes in Russian beef cattle breeds. Russian Journal of Genetics. 2014;50(12):1302-1307. doi: 10.1134/S1022795414120035
  6. Tjulkin SV, Ahmetov TM, Valiullina EF, Vafin RR. Polymorphism of genes for somatotropin, prolactin, leptin, and thyroglobulin in stud bulls. Vavilov Journal of Genetics and Breeding. 2012;16(4/2):1008-1012.
  7. Aldai N, Lavín P, Kramer JKG, Jaroso R, Mantecón AR. Breed effect on quality veal production in  mountain areas: emphasis on meat fatty acid composition. Meat Science. 2012;92(4):687-696. doi: 10.1016/j.meatsci.2012.06.024
  8. Allais S, Journaux L, Leveziel H, Payet-Duprat N, Raynaud P, Holquette JF, Lepetit J, Rousse S, Denoyelle C, Bernarol-Capel C, Renand G. Effects of polymophisms in the calpastatin and ϻ-calpain genes on meat  tenderness  in  3   French   beef   breeds. Journal of Animal Science. 2011;89(1):1-11. doi: https://doi.org/10.2527/jas.2010-3063
  9. Arzt J, Pacheco JM, Smoliga GR, Tucker MT, Bishop E, Pauszek SJ, Hartwig EJ, de los Santos T, Rodriguez LL. Foot-and-mouth disease virus virulence in cattle is co-determined by viral replication dynamics and route of infection. Virology. 2014;452-453:12-22. doi.org/10.1016/j.virol.2014.01.001
  10. Aschard H, Vilhjálmsson BJ, Greliche N, Morange PE, Trégouët DA, Kraft P. Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies. The American Journal of Human Genetics. 2014;94(5):662-676. doi: 10.1016/j.ajhg.2014.03.016
  11. Asiamah PA, Bechtel DG, Waldner  C, Buchanan FC. Effects of leptin Arg25Cys on peripheral mononuclear cell counts and antibody response to vaccination in beef cattle. Animal Genetic. 2009;40(5):783-787. doi.org/10.1111/j.1365-2052.2009.01918.x
  12. Auton A et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74. doi: 10.1038/nature15393
  13. Auty H, Torr SJ, Michoel T, Jayaraman S, Morrison L. Cattle trypanosomosis: the diversity of trypanosomes and implications for disease epidemiology and control. Rev Sci Tech. 2015:34(2):587-598. doi: 10.20506/rst.34.2.2382
  14. Aviles C, Polvillo O, Pena F, Juarez M,Martinez AL, Molina A. Association between DGAT1, FABP4, LEP, RORC, and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef. Journal of Animal Science. 2013;91(10):4571-4577. doi: https://doi.org/10.2527/jas.2013-6402
  15. Banos G, Winters M, Mrode R, Mitchell AP, Bishop CS, Woolliams JA, Coffey MP. Genetic evaluation for bovine tuberculosis resistance in dairy cattle. Journal of Dairy Science. 2017;100(2):1272-1281. doi.org/10.3168/jds.2016-11897
  16. Bayram D, Akyüz B, Arslan K, Özdemir F, Aksel EG, Çinar MU. DGAT1, CAST and IGF-I gene polymorphisms in akkaraman lambs and their effects on live weights up to weaning age. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2019;25(1):9-15. doi: 10.9775/kvfd.2018.20055
  17. Bolormaa S, Hayes BJ, van der Werf JH, Pethick D, Goddard ME, Daetwyler HD. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genomics. 2016;17:224. doi.org/10.1186/s12864-016-2538-0
  18. Brewer S. Technological quality of meat for processing. Handbook of meat processing. Fidel Toldrá PhD, ed. USA: Wiley-Blackwell; 2010:25-42. doi: https://doi.org/10.1002/9780813820897.ch2
  19. Broderick GA. Review: Optimizing ruminant conversion of feed protein to human food protein. Animal. 2018;12(8):1722-1734. doi: 10.1017/S1751731117002592
  20. Calus MP, Bijma P, Veerkamp RF. Evaluation of genomic selection for replacement strategies using selection index theory. Journal of Dairy Science. 2015;98(9):6499-6509. doi: 10.3168/jds.2014-9192
  21. Carberry CA, Waters SM, Kenny DA, Creevey CJ. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol. 2014;80(2):586-594. doi: 10.1128/AEM.03131-13
  22. Carvalho T, Siqueira F, Torres Júnior RA, de Medeiros SR, Dias Feijó GL, Dorta de Souza Junior M, Zaidan Blecha IM, Soares CO. Association of polymorphisms in the leptin and thyroglobulin genes with meat quality and carcass traits in beef cattle. Revista Brasileira de Zootecnia. 2012;41(10):2162-2168. http://dx.doi.org/10.1590/S1516-35982012001000004
  23. Castillo-López RI, et al. Natural alternatives to growth-promoting antibiotics (GPA) in animal production. J Anim Plant Sci. 2017;27(2):349-359.
  24. Cheong HS, et al. A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC genetics. 2008;9(1):33. doi.org/10.1186/1471-2156-9-33
  25. Chiaia HL, Peripolli E, Oliveira Silva de RM, Feitosa FLB, de Lemos MVA, et al. Genomic prediction ability for beef fatty acid profile in Nelore cattle using different pseudo-phenotypes. Journal of applied genetics. 2018;59(4):493-501. doi: 10.1007/s13353-018-0470-5
  26. Chung H, Shin S, Chung E. Effects of genetic variants for the bovine calpain gene on meat tenderness. Molecular Biology Reports. 2014;41(5):2963-2970. doi: 10.1007/s11033-014-3152-3
  27. de Haas Y, Pszczola M, Soyeurt H, Wall E, Lassen J. Invited review: Phenotypes to genetically reduce greenhouse  gas  emissions  in  dairying.  Journal  of  Dairy  Science. 2017;100(2):855-870. doi: 10.3168/jds.2016-11246
  28. Dehnavi E, Azari M, Hasani S, Nassiry M, Mohajer M, Ahmadi A. Genetic variability of calpastatin and calpain genes in iranian Zel sheep using PCR-RFLP and PCR-SSCP methods. Iranian Journal of Biotechnology. 2012;10(2):136-139.
  29. Durán Aguilar M, Román Ponce SI, Ruiz López FJ, González Padilla E et al. Genome‐wide association study for milk somatic cell score in Holstein cattle using copy number variation as markers. Journal of Animal Breeding and Genetics. 2017;134(1):49-59. doi: 10.1111/jbg.12238
  30. Durkin K, Coppieters W, Drögemüller C, Ahariz N, Cambisano N, Druet T, Kamatani Y et al. Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature. 2012;482(7383):81-84. doi: 10.1038/nature10757
  31. Fisher AV et al. Fatty acid composition and eating quality of lamb types derived from four diverse breed× production systems. Meat Science. 2000;55(2):141-147. doi: 10.1016/s0309-1740(99)00136-9
  32. Giblin L, Butler ST, Kearney BM, Waters SM, Callanan MJ, Berry DP. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires. BMC Genetics. 2010;11:73. doi.org/10.1186/1471-2156-11-73
  33. Giordano JO, Wiltbank MC, Fricke PM, Bas S, Pawlisch R, Guenther JN, Nascimento AB. Effect of increasing GnRH and PGF2α dose during Double-Ovsynch on ovulatory response, luteal regression, and fertility of lactating dairy cows. Theriogenology. 2013;80(7):773-783. doi: 10.1016/j.theriogenology.2013.07.003
  34. Goddard ME, Whitelaw E. The use of epigenetic phenomena for the improvement of sheep and cattle. Frontiers in Genetics. 2014;5:247. doi.org/10.3389/fgene.2014.00247
  35. Jaton C, Koeck A, Sargolzaei M, Malchiodi F, Price CA, Schenkel FS, Miglior F. Genetic analysis of superovulatory response of Holstein cows in Canada. Journal of Dairy Science. 2016;99(5):3612-3623. doi: 10.3168/jds.2015-10349
  36. Jenko J, McClure MC, Matthews D, McClure J, Johnsson M, Gorjanc G, Hickey JM. Analysis of a large dataset reveals haplotypes carrying putatively recessive lethal and semi-lethal alleles with pleiotropic effects on economically important traits in beef cattle. Genetics Selection Evolution. 2019;51(1):9. doi: https://doi.org/10.1186/s12711-019-0452-z
  37. Juliarena MA et al. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. Journal of Dairy Science. 2016;99(6):4586-4589. doi: 10.3168/jds.2015-10480
  38. Kariuki CM, Brascamp EW, Komen H, Kahi AK, Van Arendonk JAM. Economic evaluation of progeny-testing and genomic selection schemes for small-sized nucleus dairy cattle breeding programs in developing countries. Journal of Dairy Science. 2017;100(3):2258-2268. doi.org/10.3168/jds.2016-11816
  39. Kmieć M, Kulig H, Wierzbicki H. Polymorphismus im leptin-gen in verbindung mit ausgewählten reproduktions-leistungen von ebern. (Polymorphism of the leptin gene and its association with some performance reproductive traits of boars). Tierarztliche Umschau. 2006;61(2):77-83.
  40. Kök S, Atala S, Eken HS, Savasci M. The genetic characterization of Turkish grey cattle with regard to UoG Cast, CAPN1 316 and CAPN1 4751 markers. Pakistan Journal of Zoology. 2017;49(1) 297-304. doi: 10.17582/journal.pjz/2017.
  41. Komisarek J. Impact of LEP and LEPR gene polymor-phismson functional traits in Polish Holstein-Friesian cattle. Animal Science Papers and Reports. 2010;28(2):133-141.
  42. Lawrence P, Kenny DA, Earley B, McGee M. Intake of conserved and grazed grass and performance traits in beef suckler cows differing in phenotypic residual feed intake. Livestock Science. 2013;152(2-3):154-166. doi: 10.1016/j.livsci.2012.12.024
  43. Lenis C, Ramos L, Londoño M, Hernandez D, Álvarez L. Polymorphisms of the calpain and calpastatin genes in the Colombian creole Hartón del Valle cattle. Revista de Investigaciones Veterinarias del Perú (RIVEP). 2018;29(3):818-827. doi:http://dx.doi.org/10.15381/rivep.v29i3.14003
  44. Li C et al. Genetic effects of FASN, PPARGC1A, ABCG2 and IGF1 revealing the association with milk fatty acids in a Chinese Holstein cattle population based on a post genome-wide association study. BMC genetics. 2016;17(1):110. doi: https://doi.org/10.1186/s12863-016-0418-x
  45. Marino R, Albenzio M, della Malva A, Caroprese M, Santillo A, Sevi A. Changes in meat quality traits and sarcoplasmic proteins during aging in three different cattle breeds. Meat Science. 2014;98(2):178-186. doi: 10.1016/j.meatsci.2014.05.024
  46. Martins P, Arthington JD, Cooke RF, Lamb CG, Araujo DB. Evaluation of beef cow and calf separation systems to improve reproductive performance of first-calf cows. Livestock Science. 2012;150(1-3):74-79. doi: http://dx.doi.org/10.1016/j.livsci.2012.08.003
  47. Medrano-Galarza C, Gibbons J, Wagner S, De Passillé AM, Rushen J. Behavioral changes in dairy cows with mastitis. Journal of Dairy Science. 2012;95(12):6994-7002. doi: 10.3168/jds.2011-5247
  48. Mekata H et al. Evaluation of the natural perinatal transmission of bovine leukaemia virus. Veterinary Record. 2015;176(10):254-254. doi: 10.1136/vr.102464
  49. Miretti S, Martignani E, Accornero P, Baratta M. Functional effect of mir-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype. BMC genomics. 2013;14(1):194. doi: 10.1186/1471-2164-14-194
  50. Mishra A, Sanghi D, Avasthi S, Srivastava RN. Genetic polymorphism in GDF-5 gene as risk factor for development and progression  of  osteoarthritis knee. Osteoarthritis and Cartilage. 2012;20(S1):S199. doi: https://doi.org/10.1016/j.joca.2012.02.324
  51. Mishra A, Sanghi D, Srivastava RN, Raj S. AB0001 Genetic polymorphism in GDF-5 gene as risk factor for development and progression of osteoarthritis. Annals of the Rheumatic Diseases. 2013;71(3):637-637. doi: http://dx.doi.org/10.1136/annrheumdis-2012-eular.1
  52. Mudili V, Nayaka SC, Batra HS. Detection of toxigenic and pathogenic fungi targeting metabolic pathway genes. Biotechnology of Fungal Genes. Gupta VK, Ayyachamy M, eds. Enfield: CRC Press; 2012:307-341. doi: 10.1201/b11777
  53. Naderi S, Bohlouli M, Yin T, König S. Genomic breeding values, SNP effects and gene identification for disease  traits  in  cow  training sets. Animal genetics. 2018;49(3):178-192. doi: 10.1111/age.12661
  54. Neja W, Sawa A, Jankowska M, Bogucki M, Krężel-Czopek S. Effect of the temperament of dairy cows on lifetime production efficiency. Archives Animal Breeding. 2015;58(1):193-197. doi:https://doi.org/10.5194/aab-58-193-2015
  55. Nimbona C, Kulikova NI, Butore J, Ntunzwenimana M. The results of the embryo transfer to heifers from the ayrshire breed. RUDN Journal of Agronomy and Animal Industries. 2019;14(1):66-72. doi: 10.22363/2312-797X-2019-14-1-66-72
  56. Oliveira de HR, Silva FF, Brito LF, Guarini AR, Jamrozik J, Schenkel FS. Comparing deregression methods for genomic prediction of test‐day traits in dairy cattle. Journal of Animal Breeding and Genetics. 2018;135(2):97-106. doi: 10.1111/jbg.12317
  57. Orsavova J, Misurcova L, Ambrozova J, Vicha R, Mlcek J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular sciences. 2015;16(6):12871-12890. doi: 10.3390/ijms160612871
  58. Papaleo Mazzucco J, Goszczynski D, Ripoli M, Melucci L, Pardo A, Colatto E, Rogberg-Muñoz A, Mezzadra C et al. Growth, carcass and meat quality traits in beef from Angus, Hereford and cross-breed grazing steers, and their association with SNPs in genes related to fat deposition metabolism. Meat Science. 2016;114:121-129. doi:https://doi.org/10.1016/j.meatsci.2015.12.018
  59. Pinto LFB, Ferraz JBS, Meirelles FV, Eler JP, Rezende FMD, Carvalho ME et al. Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genetics and Molecular Research. 2010;9(3):1431-1442. doi: 10.4238/vol9-3gmr881
  60. Pogorzelska J, Miciński J, Ostoja H, Kowalsk IM, Szarek J, Strzyżewska E. Quality traits of meat from young Limousin, Charolais and Hereford bulls. Pak Vet J. 2013;33(1):65-68.
  61. Raphaka K, Matika O, Sánchez-Molano E, Mrode R, Coffey MP, Riggio V et al. Genomic regions underlying susceptibility to bovine tuberculosis in Holstein-Friesian cattle. BMC genetics. 2017;18(1):27. doi: 10.1186/s12863-017-0493-7
  62. Ridpath JF, Bayles DO, Neill JD, Falkenberg SM, Bauermann FV et al. Comparison of the breadth and complexity of bovine viral diarrhea (BVDV) populations circulating in 34 persistently infected cattle generated in one outbreak. Virology. 2015;485:297-304. doi: https://doi.org/10.1016/j.virol.2015.07.022
  63. Ross EM et al. Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. PloS one. 2013;8(9):e73056. doi: https://doi.org/10.1371/journal.pone.0073056
  64. Rothammer S et al. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genetics Selection Evolution. 2014;46(1):44. doi: 10.1186/1297-9686-46-44
  65. Rumpold BA, Schlüter OK. Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research. 2013;57(5):802-823. doi: 10.1002/mnfr.201200735
  66. Saatchi M, Schnabel RD, Rolf MM, Taylor JF, Garrick DJ. Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genetics Selection Evolution. 2012;44(1):38. doi: 10.1186/1297-9686-44-38
  67. Serra X et al. Eating quality of young bulls from three Spanish beef breed-production systems and its relationships  with chemical and instrumental meat quality. Meat Science. 2008;79(1):98-104. doi: 10.1016/j.meatsci.2007.08.005
  68. Shevhuzhev A, Belik N, Emelyanov E, Tokar A. Milk productivity of Simmental cows Austrian selection. In: 16th international scientific conference engineering for rural development, 24-26.05.2017 Jelgava, LATVIA;   LV:Latvia  University  of  Agriculture;  2017:1354-1358. doi: 10.22616/ERDev2017.16.N304
  69. Shmukler BE, Brugnara C, Alper SL. Structure and genetic polymorphism of the mouse KCC1 gene. Biochimica et Biophysica Acta. 2000;1492(2-3):353-361. doi: 10.1016/s0167-4781(00)00118-4
  70. Signer-Hasler H et al. Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genetics Selection Evolution. 2017;49(1):83. doi: 10.1186/s12711-017-0358-6
  71. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nature Reviews Genetics. 2013;14(7):483-495. doi: 10.1038/nrg3461
  72. Spurlock DM, Stock ML, Coetzee JF. The impact of 3 strategies for incorporating polled genetics into a dairy cattle breeding program on the overall herd genetic merit. Journal of Dairy Science. 2014;97(8):5265-5274. doi: 10.3168/jds.2013-7746
  73. Sumantri C, Jakaria, Yamin M, Nuraini H, Putra BW, Andreas E. Keragaman gen calpastatin, calpain 3 dan  myostatin  pada  domba di up3 jonggol. Jurnal Ilmu Pertanian Indonesia. 2012;17(1):1-7. doi: http://journal.ipb.ac.id/index.php/JIPI/article/view/10165
  74. Tucker MA et al. Development of genetic SSR markers in Blumeria graminis f. sp. hordei and application to isolates  from  Australia.  Plant pathology. 2015;64(2):337-343. doi: https://doi.org/10.1111/ppa.12258
  75. van der Spek D, van Arendonk JAM, Bovenhuis H. Genome-wide association study for claw disorders and trimming status in dairy cattle. Journal of Dairy Science. 2015;98(2):1286-1295. doi: https://doi.org/10.3168/jds.2014-8302
  76. Verma A, Gupta ID, Gandhi RS. Genetic variability in production and immune function genes associated with production traits and incidence of mastitis in Indian murrah buffalo. Editorial Board. 2013:729.
  77. Walz PH et al. Evaluation of reproductive protection against bovine viral diarrhea virus and bovine herpesvirus-1 afforded by annual revaccination with modified-live viral or combination modified-live/killed viral vaccines after primary vaccination with modified-live viral vaccine. Vaccine. 2017;35(7):1046-1054. doi: 10.1016/j.vaccine.2017.01.006
  78. Wiedemar N et al. Independent polled mutations leading to complex gene expression differences in cattle. PloS one. 2014;9(3):e93435. doi: https://doi.org/10.1371/journal.pone.0093435
  79. Wiener P, Woolliams JA, Frank-Lawale A, Ryan M, Richardson RI, et al. The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Science. 2009;83(1):127-134. doi: 10.1016/j.meatsci.2009.04.010
  80. Wientjes YCJ et al. Impact of QTL properties on the accuracy of multi-breed genomic prediction. Genetics Selection Evolution. 2015;47(1):42. doi: https://doi.org/10.1186/s12711-015-0124-6
  81. Xin L, Ekerljung М, Lundstrom К, Lunden А. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Science. 2013;94(2):153-158. doi: 10.1016/j.meatsci.2013.01.010
  82. Ye MH, Chen J, Zhao G, Zheng M, Wen J. Sensitivity and specificity of high-resolution melting analysis in screening unknown SNPs and genotyping a known mutation. Animal Science Papers and Reports. 2010;28(2):161-170.
  83. Zhou X, Stephens M. Efficient algorithms for multivariate linear mixed models in genome-wide association studies. Nat. Methods.  2014;11(4):407-409. doi: 10.1038/nmeth.2848

Kolpakov Vladimir Ivanovich, Cand. Sci (Agr.), Researcher at the Beef Cattle Breeding Laboratory, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29 9 Yanvarya St., tel.: 8(3532)30-81-74; e-mail: vkolpakov056@yandex.ru

Received: 10 December 2020; Accepted: 14 December 2020; Published: 31 December 2020