Galimzhan K Duskaev, Shamil G Rakhmatullin, Olga V Kwan, Baer S Nurzhanov, Alexander S Ushakov, Georgy I Levakhin

DOI: 10.33284/2658-3135-103-4-197

UDC 636.5:591.11

Acknowledgements:

The research was carried out with the support of the Russian Science Foundation (project 16-16-10048)

Poultry productivity, blood biochemical values: the effect of Bacillus cereus and Coumarin

Galimzhan K Duskaev1, Shamil G Rakhmatullin1, Olga V Kwan1, Baer S Nurzhanov1,

Alexander S Ushakov2, Georgy I Levakhin1

1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

2All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition–branch of the Federal Science Center for Animal Husbandry named after Academy Member LK Ernst (Borovsk, Russia)

Summary. The search for alternative substances with similar effects to antibiotics is currently a global challenge for the world poultry industry. In this regard, plant substances, including medicinal plants, are of great interest. In our opinion, it is equally important to study possible synergistic effects with probiotic substances.

The experiment was carried out on 200 broiler chickens, divided into 4 experimental groups of 50 animals each (5 repetitions of 10 animals each). During each of the 3 feeding phases, the birds were fed the rations presented: the control group received the basic diet (BD), experimental I - BD + Bacillus cereus (BC) (dose 12.6 × 103 microbial bodies / kg feed / day), experimental II - BD + Coumarin (CO) (dose 2 mg / kg feed / day), III experimental - BD + BC + CO.

During the research, it was found that the inclusion of CO, as well as CO with BC in the diet, contributed to an increase in the live weight of broilers, this was especially noticeable from the 28th to 42nd day of the experiment (CO - 15.2-20.8%, P = 0 , 09; CO + BC - 15.6-12.8%, P = 0.06).

The use of BC alone in broiler diets resulted in a decrease in leukocytes (P = 0.053) compared with the rest  of  the  groups, against the background of higher values of granulocytes (P = 0.001) and hematocrit (P = 0.002). The activity of the endogenous enzyme alanineaminotransferase (ALT) in the CO group was higher (P = 0.001) in comparison with the other groups. Thus, the inclusion of the probiotic strain Bacillus cereus and Coumarin in the basic diet of poultry contributes to an increase in their productivity.

Key words: poultry, feeding, productivity, blood, probiotics, Bacillus cereus, Coumarin, enzymes.

References

  1. Inchagova KS, Duskaev GK, Deryabin DG. Quorum sensing inhibition in chromobacterium violaceum by amikacin combination with activated charcoal or small plant-derived molecules (pyrogallol and coumarin). Microbiology (Mikrobiologiya). 2019;88(1):63-71. doi:10.1134/S0026261719010132
  2. Abudabos AM, Alhouri HAA, Alhidary IA, Nassan MA, Swelum AA. Ameliorative effect of Bacillus subtilis, Saccharomyces boulardii, oregano, and calcium montmorillonite on growth, intestinal histology, and blood metabolites on Salmonella-infected broiler chicken. Environ Sci Pollut Res Int. 2019;26(16):16274-16278. doi: 10.1007/s11356-019-05105-1
  3. Adorian TJ, Jamali H, Farsani HG et al. Effects of probiotic bacteria bacillus on growth performance, digestive enzyme activity, and hematological parameters of asian sea bass, lates calcarifer (bloch). Probiotics Antimicrob Proteins. 2019;11(1):248-255. doi: 10.1007/s12602-018-9393-z
  4. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO. Screening for bacillus isolates in the   broiler   gastrointestinal  tract.  Appl  Environ  Microbiol. 2005;71(2):968-978. doi: 10.1128/AEM.71.2.968-978.2005
  5. Chen J, Yu Y, Li S, Ding W. Resveratrol and coumarin: novel agricultural antibacterial agent against ralstonia solanacearumin vitro and in vivo. Molecules. 2016; 21(11): 1501. doi: 10.3390/molecules21111501
  6. Chen JJ,  Yang CK,  Kuo YH,  Hwang TL, Kuo WL,  Lim YP,  Sung PJ,  Chang TH, Cheng MJ. .New coumarin derivatives and other constituents from the stem bark of zanthoxylum avicennae: effects on neutrophil pro-inflammatory responses. Int J Mol Sci. 2015;16(5):9719-9731. doi: 10.3390/ijms16059719
  7. Clavijo V, Flórez MJV. The gastrointestinal microbiome and its association with the control of pathogens in broiler  chicken  production:  A review. Poult Sci. 2018;97(3):1006-1021. doi: 10.3382/ps/pex359
  8. El-Far AH, Ahmed HA, Shaheen HM. Dietary supplementation of phoenix dactylifera seeds enhances performance, immune response, and antioxidant status in broilers. Oxid Med Cell Longev. 2016:5454963. doi: 10.1155/2016/5454963
  9. Felter SP, Vassallo JD, Carlton BD, Daston GP. A safety assessment of coumarin taking into account species-specificity of toxicokinetics. Food Chem Toxicol. 2006;44(4):462-475. doi: 10.1016/j.fct.2005.08.019
  10. Feng S, He X, Zhong P, Zhao J, Huang C, Hu Z. А metabolism-based synergy for total coumarin extract of radix angelicae dahuricae and ligustrazine on migraine treatment in rats. Molecules. 2018;23(5):1004. doi: 10.3390/molecules23051004
  11. Gadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal Health Research Reviews. 2017;18(1):26-45. doi: 10.1017/S1466252316000207
  12. Gong L, Wang B, Mei X, Xu H, Qin Y, Li W, Zhou Y. Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers. Anim Sci J. 2018;89(11):1561-1571. doi: 10.1111/asj.13089
  13. Jeżewska-Frąckowiak J, Seroczyńska K, Banaszczyk J, Jedrzejczak G, Żylicz-Stachula A, Skowron PM. The promises and risks of probiotic Bacillus species. Acta Biochim Pol. 2018;65(4):509-519. doi: 10.18388/abp.2018_2652
  14. Kchaou W, Abbès F, Mansour RB, Blecker C, Attia H, Besbes S. Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactyliferaL.). Food Chemistry. 2016;194:1048-1055. doi: 10.1016/j.foodchem.2015.08.120
  15. Lakshmi SG, Jayanthi N, Saravanan M, Ratna MS. Safety assesment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol Rep. 2017;4:62-71. doi: 10.1016/j.toxrep.2016.12.004
  16. Lee JH, Kim YG, Cho HS, Ryu SY, Cho MH, Lee J. Coumarins reduce biofilm formation and the virulence of  Escherichia  coli  O157:H7. Phytomedicine. 2014;21(8-9):1037-1042. doi: 10.1016/j.phymed.2014.04.008
  17. Li H, Yao Y, Li L. Coumarins as potential antidiabetic agents. J Pharm Pharmacol. 2017;69(10):1253-1264. doi:10.1111/jphp.12774
  18. Majed R, Faille C, Kallassy M, Gohar M. Bacillus cereus biofilms-same, only different. Front Microbiol. 2016;7:1054. doi: 10.3389/fmicb.2016.01054
  19. Nasr T, Bondock S, Youns M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. European  Journal  of Medicinal Chemistry. 2014;76:539-548.  doi: 10.1016/j.ejmech.2014.02.026
  20. Rashidi M, Ali Ziai S, Zanjani TM, Khalilnezhad A, Jamshidi H, Amani D. Umbelliprenin is potentially toxic against the ht29, ct26, mcf-7, 4t1, a172, and gl26 cell lines, potentially harmful against bone marrow-derived stem cells, and non-toxic against peripheral blood mononuclear cells. Iran Red Crescent Med J. 2016;18(7):e35167. doi: 10.5812/ircmj.35167
  21. Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O´Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol. 2018;102(5):2063-2073. doi: 10.1007/s00253-018-8787-x
  22. Sakasegawa S, Ishikawa H, Imamura S, Sakuraba H, Goda S, Ohshima T. Bilirubin oxidase activity of Bacillus subtilis CotA. Appl Environ Microbiol. 2006;72(1):972-975. doi: 10.1128/AEM.72.1.972-975.2006
  23. Salaheen S, Kim SW, Haley BJ,  Van Kessel JAS,  Biswas D. Alternative growth promoters modulate broiler gut microbiome and enhance body weight gain. Front Microbiol. 2017;8:2088. doi: 10.3389/fmicb.2017.02088
  24. Salaheen S, Jaiswal E, Joo J, Peng M, Ho R, OConnor D et al. Bioactive extracts from berry byproducts on the pathogenicity of Salmonella Typhimurium. Int. Food Microbiol. 2016. 237:128-135. doi: 10.1016/j.ijfoodmicro.2016.08.027
  25. Sugiharto S, Isroli I, Yudiarti T, Widiastuti E. The effect of supplementation of multistrain probiotic preparation in combination with vitamins and minerals to the basal diet on  the  growth  performance,  carcass  traits,  and   physiological   response   of  broilers. Vet World. 2018;11(2):240-247. doi: 10.14202/vetworld.2018.240-247
  26. Sun H, Song X, Tao Y et al. Synthesis & α-glucosidase inhibitory & glucose consumption-promoting activities of flavonoid-coumarin hybrids. Future Med Chem. 2018;10(9):1055-1066. doi: 10.4155/fmc-2017-0293
  27. Tashiro Y, Sakai R, Hirose-Sugiura T et al. Effects of osthol isolated from cnidium monnieri fruit on urate transporter 1. Molecules. 2018;23(11):2837. doi: 10.3390/molecules23112837
  28. Tejada S, Martorell M, Capo X, Tur JA, Pons A, Sureda A. Coumarin and derivates as lipid lowering agents. Curr Top Med Chem. 2017;17(4):391-398. doi: 10.2174/1568026616666160824102322
  29. Tian D, Wang F, Duan M et al. Coumarin analogues from the citrus grandis (l.) osbeck and their hepatoprotective activity. J Agric Food Chem. 2019;67(7):1937-1947. doi: 10.1021/acs.jafc.8b06489
  30. Tsai HH, Schmidt W. Mobilization of iron by plant-borne coumarins. Trends Plant Sci. 2017;22(6):538-548. doi: 10.1016/j.tplants.2017.03.008
  31. World Health Organization. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization; 2014:257 р.

Duskaev Galimzhan Kalikhanovich, Dr. Sci. (Biol.), Head of the Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St.,  tel.: 8(3532)30-81-79, e-mail: gduskaev@mail.ru

Rakhmatullin Shamil Gafiullovich, Cand. Sci. (Biol.), Senior Researcher of the Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29 9 Yanvarya St., е-mail: shahm2005@rambler.ru

Kvan Olga Vilorievna, Cand. Sci. (Biol.), Senior Researcher of the Department of Feeding Farm Animals and Feed Technology named after S.G. Leushin, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29 9 Yanvarya St., tel.: 89225485657, e-mail: kwan111@yandex.ru

Nurzhanov Baer Serekpaevich, Cand. Sci (Agr.), Senior Researcher of the Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., e-mail: baer.nurzhanov@mail.ru

Ushakov Alexander Sergeyevich, Cand. Sci (Biol.), Senior Researcher, Laboratories Of Physiology Of Digestion And Interstitial Metabolism All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition– branch of the Federal Science Center for Animal Husbandry named after Academy Member LK Ernst, 249013, Kaluga Region, Borovsk, Russia, e-mail: asu2004@bk.ru

Levakhin Georgy Ivanovich, Dr. Sci. (Agr.), Professor, Chief Researcher of the Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Russia, Orenburg, ul. 9 Yanvarya, 29, tel.: 8(3532)30-81-79

Received: 10 December 2020; Accepted: 14 December 2020; Published: 31 December 2020

Download