Vitaly A Ryazanov, Georgy I Levakhin, Galimzhan K Duskaev, Baer S Nurzhanov Elena V Sheyda, Vyacheslav M Gabidulin

DOI: 10.33284/2658-3135-103-4-139

UDC 636.083.37:665.12

Acknowledgements:

Research was carried out according the plan of research scientific works on 2019-2021 yy. FSBSI FRC BST RAS (No 0761-2019-0005)

Assessment of effect of stearic acid (C18:0) on the quantitative composition of the rumen

fluid microbiome of the young cattle

Vitaly A Ryazanov, Georgy I Levakhin, Galimzhan K Duskaev, Baer S Nurzhanov

Elena V Sheyda, Vyacheslav M Gabidulin

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences (Orenburg, Russia)

Summary. Lipids are one of the most energy-intensive organic compounds that can enrich the diets of ruminants. Fats contain the fat-soluble vitamins necessary for normal development of the body.

Much attention should be paid to the fatty-acid composition of the fats used in ruminant feeding, which are composed of saturated and unsaturated fatty acids, but fatty acids have different effects on rumen bacteria. In our research we paid attention to the study of stearic acid (C18:0), which is a saturated fatty acid and is contained  almost in all vegetable fats.

In the process of research there were identified the groups of bacteria from the rumen fluid of young cattle under the influence of stearic acid.

It was found that the use of fatty acid caused the shift in bacteria from gram-positive to gram-negative. Thus, the largest phyla were Firmicutes (54.6%) for the control group, with the use of stearic acid this indicator was Firmicutes (25.1%). The ratio for the Bacteroidetes phylum of the control group to the experimental one using stearic acid was 1:1,4.

Key words: cattle, calf, feeding, stearic acid, rumen microbiome.

References

  1. Elina EE. Biodiversity: guidance manual for bachelors of “Ecology and Nature Management” educational course. Orenburg: Printing house “Express-pechat”; 2016:36 p.
  2. Safiulina EB. Influence of fat supplements to the diets of young cattle on its growth, development and meat productivity. [dissertation] p. Persianovskii; 2009:151 p.
  3. AbuGhazaleh A, Jacobson BN. Production of trans C18:1 and conjugated linoleic acid in continuous culture fermenters fed diets containing fish oil and sunflower oil with decreasing levels of forage. Animal. 2007;1(5):660-665.doi: 10.1017/S1751731107727489
  4. Aldai N, Delmonte P, Alves SP, Bessa RJB, Kramer JKG. Evidence for the initial steps of dha biohydrogenation by mixed ruminal microorganisms from sheep involves formation of conjugated fatty acids. J Agric Food Chem. 2018;66(4):842-855. doi: 10.1021/acs.jafc.7b04563
  5. Atlanderova K, Makaeva A, Rysaev A, Nurzhanov B, Duskaev G, Rayzanov V. The effect of medicinal extracts on microflora and enzymatic processes of calf rumen. Journal of Animal Science. 2020;98(4):258. doi: https://doi.org/10.1093/jas/skaa278.466
  6. Belenguer A, Toral PG, Frutos P, Hervás G. Changes in the rumen bacterial community in response to sunflower oil and fish oil supplements in the diet of dairy sheep. J Dairy Sci. 2010;93(7):3275-3286. doi: 10.3168/jds.2010-3101
  7. Dohme F, Machmüller A, Wasserfallen A, Kreuzer M. Ruminal methanogenesisas influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 2001;32(1):47-51. doi: 10.1111/j.1472-765x.2001.00863.x
  8. Elliott JP, Overton TR, Drackley JK. Digestibility and effects of three forms of mostly saturated fatty acids. J Dairy Sci. 1994;77(3):789-798. doi: 10.3168/jds.S0022-0302(94)77014-4
  9. Enjalbert F, Combes S, Zened A, Meynadier A. Rumen microbiota and dietary fat: a mutual shaping. J Appl Microbiol. 2017;123(4):782-797. doi: 10.1111/jam.13501
  10. Fernie CE. Conjugated linoleic acid. Encyclopedia of Food Sciences and Nutrition (2nd ed), Caballero B, Fingals P, Toldra FPhD, editors. Academic Press; 2003:1581-1587.
  11. Huws SA, Creevey CJ, Oyama B, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C,  Morgavi DP. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol. 2018;9:2161. doi: 10.3389/fmicb.2018.02161
  12. Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 2014;9(1):e85423. doi: 10.1371/journal.pone.0085423
  13. Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci. 2008;86(2):397-412. doi: 10.2527/jas.2007-0588
  14. Jiao S, Cao H, Dai Y, Wu J, Lv J, Du R, Han B. Effect of high-fat diet and growth stage on the diversity and composition of intestinal microbiota in healthy bovine livestock. J Sci Food Agric. 2017;97(14):5004-5013. doi: 10.1002/jsfa.8380
  15. Kindaichi T, Yamaoka S, Uehara R, Ozaki N, Ohashi A, Albertsen M, Nielsen PH, Nielsen JL. Phylogenetic diversity and ecophysiology of candidate phylum saccharibacteria in activated sludge. FEMS microbiology ecology. 2016;92(6):fiw078. doi: 10.1093/femsec/fiw078
  16. Lamp O, Reyer H, Otten W, Nürnberg G, Derno M, Wimmers K, Metges CC, Kuhla B. Intravenous lipid infusion affects dry matter intake, methane yield, and rumen bacteria structure in late-lactating Holstein cows. J Dairy Sci. 2018;101(7):6032-6046. doi: 10.3168/jds.2017-14101
  17. Liu C, Wu H, Liu S, Chai S, Meng Q, Zhou Z. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front Microbiol. 2019;10:1116 doi:10.3389/fmicb.2019.01116
  18. Maia MRG, Chaudhary LC, Bestwick CS, Richardson AJ, McKain N, Larson TR, Graham IA, Wallace RJ. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiology.2010;10:52.doi:10.1186/1471-2180-10-52
  19. Makaeva A, Atlanderova K, Duskaev G, Nurzhanov B, Rysaev A. Effects of folia betulae and méntha piperíta extracts on microbiological and enzymatic characteristics of cattle rumen. Journal of Animal Science. 2020;98(4):257-258. doi:https://doi.org/10.1093/jas/skaa278.465
  20. Martin C, Ferlay A, Mosoni P, Rochette Y, Chilliard Y. Doreau M. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. Journal of Dairy Science. 2016;99(5):3445-3456. doi.org/10.3168/jds.2015-10110
  21. Myer PR, Smith TP, Wells JE, Kuehn LA, Freetly HC. Rumen microbiome from steers differing in feed efficiency. PLoS ONE. 2015;10(6):e0129174. doi: 10.1371/journal.pone.0129174
  22. Owens FN, Secrist DS, Hill WJ, Gill DR. Acidosis in cattle: a review. J Anim Sci. 1998;76(1):275-286. doi: 10.2527/1998.761275x
  23. Rayzanov V, Nurzhanov B, Rysaev A, Duskaev G, Miroshnikov I. Evaluation of the effect of chlortetracycline on ruminal microbiome of ruminant against a background of plant extract. Journal of Animal Science. 2020;98(4):258-259. doi:https://doi.org/10.1093/jas/skaa278.467
  24. USEARCH. Ultra-fast sequence analysis [Internet] usearch v8.0.1623_i86linux32. Available from: http://drive5.com/usearch
  25. Vossenberg JLCM , Joblin KN. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett Appl Microbiol. 2003;37(5):424-428. doi: 10.1046/j.1472-765x.2003.01421.x
  26. Wright AG, Klieve AV. Does the complexity of the rumen microbial ecology preclude methane mitigation? Animal  Feed  Science  and  Technology. 2011;166-167:248-253. doi: 10.1016/j.anifeedsci.2011.04.015
  27. Yang SL, Bu DP, Wang JQ, Hu ZY, Li D, Wei HY, Zhou LY, Loor JJ. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal. 2009;3(11):1562-1569. https: //doi.org/10.1017/S1751731109990462
  28. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd merger. Bioinformatics. 2014;30(5):614-620 doi: 10.1093/bioinformatics/btt593
  29. Zened A, Enjalbert FF, Nicot MC, Troegeler-Meynadier A. Starch plus sunflower oil addition to the diet of dry dairy cows results in a trans-11 to trans-10 shift of biohydrogenation. Journal of Dairy Science. 2013;96(1):451-459. doi: http://dx.doi.org/10.3168/jds.2012-5690

Ryazanov Vitaly Aleksandrovich, Cand. Sci. (Agr.), Researcher of Farm Animal Feeding and Feed Technology Department named after Leushin SG., Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 89228077100, e-mail: vita7456@yandex.ru

Levakhin Georgy Ivanovich, Dr. Sci. (Agr.), Professor, Chief Researcher of the Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Russia, Orenburg, ul. 9 Yanvarya, 29, tel.: 8(3532)30-81-79

Duskaev Galimzhan Kalikhanovich, Dr. Sci. (Biol.), Head of the Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St.,  tel.: 8(3532)30-81-79, e-mail: gduskaev@mail.ru

Nurzhanov Baer Serekpaevich, Cand. Sci (Agr.), Senior Researcher of the Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., e-mail: baer.nurzhanov@mail.ru

Sheyda Elena Vladimirovna, Cand. Sci (Biol.), Researcher, Laboratory for Biological Testing and Expertises, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., 8-922-862-64-02, e-mail: elena-shejjda@mail.ru

Gabidulin Vyacheslav Mikhaylovich, Dr. Sci. (Agr.), Leading Researcher, Beef Cattle Breeding Department, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia, 29, 9 Yanvarya St., tel.: 8(3532)30-81-74, е-mail: Gabidulin.V.M@yandex.ru

Received: 11 December 2020; Accepted: 14 December 2020; Published: 31 December 2020

Download