Anastasiya A Emelyanova, Antonina A Novikova

Animal Husbandry and Fodder Production. 2022. Vol. 105, no 1. Р. 130-138.

doi: 10.33284/2658-3135-105-1-130

Growth regulators, nanoparticles and microfertilizers as factors for increasing plant productivity by vegetation treatment under stress (review)

 Anastasiya A Emelyanova1, Antonina A Novikova2

1,2Federal Research Centre оf Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1emelka1711@mail.ru, https://orcid.org/0000-0001-9877-1679

2tony-novikova@yandex.ru, https://orcid.org/0000-0002-6947-9262

 Abstract. An important trend in modern agricultural technology and agriculture is increasing the yield of plants and their resistance to abiotic stress. Soil salinity, elevated temperatures and drought are factors affecting the yield of one of the world's most important crops. Foliar treatment of plants according to the phases of vegetation has a number of advantages that maintain the competitiveness of this method. The review presents a generalized material containing up-to-date information from foreign authors on the factors for increasing yields under stress conditions by treating plants with various growth regulators, nanoparticles and microfertilizers. Foliar top dressing during the growing season stimulates the acceleration of plant growth and development, increasing the quantity and, that is important - the quality of crop.

Keywords: agricultural plants, productivity, vegetation treatment, foliar treatment, growth regulators, microfertilizers, nanoparticles

Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2030 FSBRI FRC BST RAS (No. 0526-2022-0015).

For citation: Emelyanova АА, Novikova AA. Growth regulators, nanoparticles and microfertilizers as factors for increasing plant productivity by vegetation treatment under stress (review). Animal Husbandry and Fodder Production. 2022;105(1):130-138. (In Russ.). https://doi.org/10.33284/2658-3135-105-1-138

References

  1. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS. Effect of copper oxide nanoparticle on seed germination of selected crops. J Agric Sci Technol. 2012;2(6):815-823.
  2. Alabdallah NM, Alzahrani HS. The potential mitigation effect of ZnO nanoparticles on (Abelmoschus esculentus L. Moench) metabolism under salt stress conditions. Saudi J Biol Sci. 2020;27(11):3132-3137. doi: 10.1016/j.sjbs.2020.08.005
  3. Al-Amri N et al. Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum). Ecotoxicol Environ Saf. 2020;194:110377. doi: 10.1016/j.ecoenv.2020.110377
  4. Aqeel U et al. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere. 2022;291(1):132672. doi: 10.1016/j.chemosphere.2021.132672
  5. Aziz MZ et al. Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. Journal of Integrative Agriculture. 2019;18(6):1369-1378. doi: 10.1016/S2095-3119(18)62095-7
  6. Chen L, Hu WF, Long C, Wang D. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L.) and improve the efficacy of U and Cd remediation. Chemosphere. 2021;262:127809. doi: 10.1016/j.chemosphere.2020.127809
  7. Cvjetko P et al. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf. 2017;137:18-28. doi: 10.1016/j.ecoenv.2016.11.009
  8. Faghih S, ZareiA, Ghobadi C. Positive effects of plant growth regulators on physiology responses of Fragaria Camarosaunder salt stress. Int J Fruit Sci. 2019;19(1):104-114. doi: 10.1080/15538362.2018.1462291
  9. Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires AR. Phytotoxicity of silver nanoparticles on Viciafaba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci Total Environ. 2020;701:134816. doi: 10.1016/j.scitotenv.2019.134816
  10. Farooq M, Wahid A, Siddique KHM. Micronutrient application through seed treatments - a review. J Soil Sci Plant 2012;12(1):125-142. doi: 10.4067/S0718-95162012000100011
  11. Farooq MA et al. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Frontiers in Plant Science. 2016;7:468. doi: 10.3389/fpls.2016.00468
  12. Fujita K, Horiuchi H, Takato H, Kohno M, Suzuki S. Auxin-responsive grape Aux/IAA9 regulates transgenic Arabidopsis plant growth. Mol Biol Rep. 2012;39(7):7823-7829. doi: 10.1007/s11033-012-1625-9
  13. Hager A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res. 2003;116(6):483-505. doi: 10.1007/s10265-003-0110-x
  14. Hao Y, Zhang Z, Rui Y, Ren JY, Hou TQ, Wu SJ, Liu LM. Effect of different nanoparticles on seed germination and seedling growth in rice. In: Bhatnagar AK et al., editors. Proceedings of the 2nd Annual International Conference on Advanced Material Engineering (AME 2016), 15-17 April 2016, Wuhan, China . Adv. Eng. Res. Atlantis Press. 2016;85:166-173. doi: 10.2991/ame-16.2016.28
  15. Hayes KL, Mui J, Song B, Sani ES, Eisenman SW, Sheeld JB, Kim B. Effects, uptake, and translocation of aluminum oxide nanoparticles in lettuce: a comparison study to phytotoxic aluminum ions. Sci Total Environ. 2020;719:137393. doi: 10.1016/j.scitotenv.2020.137393
  16. Hu P, An J, Faulkner MM, Wu H, Li Z, Tian X, Giraldo JP. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano. 2020;14(7):7970-7986. doi: 10.1021/acsnano.9b09178
  17. Hussain S et al. Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol Biochem. 2021;159:43-52. doi: 10.1016/j.plaphy.2020.11.053
  18. Iqbal M, Ashraf M. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp. B. 2013;86:76-85. doi: 10.1016/j.envexpbot.2010.06.002
  19. Iqbal M, Ashraf M. Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J Integr Plant Biol. 2007;49(7):1003-1015. doi: 10.1111/j.1672-9072.2007.00488.x
  20. Keller CP. Leaf expansion in Phaseolus: transient auxin-induced growth increase. Physiol Plant. 2017;130(4):580-589. doi: 10.1111/j.1399-3054.2007.00916.x
  21. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon. 2015;81:607-619. doi: 10.1016/j.carbon.2014.09.095
  22. Li F et al. The specific W-boxes of GAPC5 promoter bound by TaWRKY are involved in drought stress response in wheat. Plant Sci. 2020;296:110460. doi: 10.1016/j.plantsci.2020.110460
  23. Li YH, Wu YJ, Wu B,Zum MH, Zhang Z, Sun GM. Exogenous gibberellic acid increases the fruit weight of Comte de Paris pineapple by enlarging flesh cells without negative effects on fruit quality. Acta Physiol. Plant. 2011;33:1715-1722. doi: 10.1007/s11738-010-0708-2
  24. Majda M, Robert S. The role of auxin in cell wall expansion. Int J Mol Sci. 2018;19(4):951. doi: 10.3390/ijms19040951
  25. Maruyama CR et al. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep. 2016;6:19768. doi: 10.1038/srep19768
  26. Melash AA, Mengistu DK,Aberra DA, Tsegay A. The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat. Journal of Cereal Science. 2019;85:221-227. doi: 10.1016/j.jcs.2018.08.005
  27. Ogweno JO et al. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in lycopersiconesculentum. J Plant Grow Regul. 2008;27:49-57. doi: 10.1007/s00344-007-9030-7
  28. Okupnik A, Pflugmacher S. Oxidative stress response of the aquatic macrophyteHydrillaverticillata exposed to TiO2 Environ Toxicol Chem. 2016;35(11):2859-2866. doi: 10.1002/etc.3469
  29. Palocci C et al. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Rep. 2017;36:1917-1928. doi: 10.1007/s00299-017-2206-0
  30. Panigrahy M, Das S, Poli Y, Sahoo PK, Kumari K, Panigrahi KCS. Carbon nanoparticle exerts positive growth effects with increase in productivity by down-regulating phytochrome B and enhancing internal temperature in rice. Rice Science. 2021;28(3):289-300. doi: 10.1016/j.rsci.2021.04.007
  31. Poshtmasari HK, Bahmanyar MA, Pirdashti H, Shad MA. Effects of Zn rates and application forms on protein and some micronutrients accumulation in common bean (Phaseolus vulgaris L.). Pak J Biol Sci. 2008;11(7):1042-6. doi: 10.3923/pjbs.2008.1042.1046
  32. Qureshi KM, Chughtai US, Qureshi US, Abbasi NA. Impact of exogenous application of salt and growth regulators on growth and yield of strawberry. Pak J Bot. 2013;45:1179-1185.
  33. Rademacher W. Plant growth regulators: Backgrounds and uses in plant production. J Plant Growth Regul. 2015;34:845-872. doi: 10.1007/s00344-015-9541-6
  34. Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Ghazaryan K. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ. 2018;645:1103-1113.doi: 10.1016/j.scitotenv.2018.07.211
  35. Ramraj VM, Vyas BN, Godrej NB, Mistry KB, Swami BN, Singh N. Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. The Journal of Agricultural Science. 1997;128(4):405-413. doi: 10.1017/S0021859697004322
  36. Sajedi NA et al. The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol Mol Biol Plants. 2011;17:215-222. doi: 10.1007/s12298-011-0067-5
  37. Sathiyabama M, Manikandan A. Foliar application of chitosan nanoparticle improves yield, mineral content and boost innate immunity in finger millet plants. Carbohydrate Polymers. 2021;258:117691. doi: 10.1016/j.carbpol.2021.117691
  38. Sergiev I, Todorova D, Shopova E, Jankauskiene J, Jankovska-Bortkevič E, Jurkonien ES. Effects of auxin analogues and heat stress on garden pea. Zemdirbyste-Agricult. 2018;105(3):243-248. doi: 10.13080/z-a.2018.105.031
  39. Shafiq F, Iqbal M, Ashraf MA, Ali M. Foliar applied fullerol differentially improves salt tolerance in wheat through ion compartmentalization, osmotic adjustments and regulation of enzymatic antioxidants. Physiol Mol Biol Plants. 2020;26(3):475-487. doi: 10.1007/s12298-020-00761-x
  40. Sheteiwy MS et al. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J Sci Food Agric. 2021;101(5):2027-2041. doi: 10.1002/jsfa.10822
  41. Thussagunpanit J et al. Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica. 2015;53(2):312-320. doi: 10.1007/s11099-015-0106-5
  42. Tognetti VB, Mühlenbock P, Van Breusegem F. Stress homeostasis - the redox and auxin perspective. Plant Cell Environ. 2012;35(2):321-33. doi: 10.1111/j.1365-3040.2011.02324.x
  43. Tripathi DK et al. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem. 2017;110:167-177. doi: 10.1016/j.plaphy.2016.06.015
  44. Venugopalan VK et al. The response of lentil (Lens culinaris Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. Front Plant Sci. 2021;22(12):679469. doi: 10.3389/fpls.2021.679469
  45. Wani SH, Kumar V, Shriram V, Sah SK. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4(3):162-176. doi: 10.1016/j.cj.2016.01.010
  46. Waraich E, Ahmad R, Halim A, Aziz T. Alleviation of temperature stress by nutrient management in crop plants: A Review. J Soil Sci Plant Nutr. 2012;12(2):221-244. doi: 10.4067/S0718-95162012000200003
  47. Witter SH, Bukovac MJ et al. Some effects of gibberellin on flowering and fruit setting. Plant Physiol. 1957;32(1):39-41. doi: 1104/pp.32.1.39
  48. Yilmaz C, Ozguyen AI. The effects of some plant nutrients, gibberellic acid and pinolene treatments on the yield, fruit quality and cracking in pomegranate. Acta Hortic. 2009;818:205-212. doi: 10.17660/ActaHortic.2009.818.30
  49. Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot. 2004;55(399):1135-43. doi: 10.1093/jxb/erh124
  50. Zaitseva RI, Komarov NM, Frid AS, Anikina LM, Zhuravlyova AS, Chumakova VV, Sokolenko NI, Panova GG. The effect of soil salinization and pre-sowing seed treatment with silicon-containing micronutrient fertilizer on barley seedlings. IOP Conference Series: Earth and Environmental Science: The VIII Congress of the Dokuchaev Soil Science Society 19-24 July 2021, Syktyvkar, Komi Republic, Russian Federation. Bristol, England: IOP Publishing; 2021;862:012089. doi: 10.1088/1755-1315/862/1/012089

Information about authors:

Anastasia A Emelyanova, master student, laboratory researcher, laboratory of Selection and Genetic Research in Crop Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 27/1 Gagarin Ave., Orenburg, 460051, tel.: 89198526182.

Antonina A Novikova, Cand. Sci. (Agriculture), Leading Researcher, Head of the Laboratory for Breeding and Genetic Research in Plant Growing, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 27/1 Gagarin Ave., Orenburg, 460051, tel.: 89228884481.

The article was submitted 11.01.2022; approved after reviewing 07.02.2022; accepted for publication 21.03.2022.

Download