Maria S Arinzhanova

Animal Husbandry and Fodder Production. 2022. Vol. 105, no 1. Р. 8-30.

  doi: 10.33284/2658-3135-105-1-8

Ultrafine preparations of trace metals: experience of use and prospects for use in aquaculture (review)

 Maria S Arinzhanova1

1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1marymiroshnikova@mail.ru, https://orcid.org/0000-0003-1898-9307

Abstract. The level of metabolism in the body depends on many factors, including the sufficiency of nutrient intake. Microelements play a huge role among exogenous materials, which are capable of exerting a significant effect on metabolic processes in the smallest doses. The field of nanotechnology has grown over the past two decades and has moved from desktop to applied technology, offering a wide [1]range of applications. Ultrafine particles (UFP) are very effective tools for diagnostics and specific delivery of therapeutic agents. Their development and use are of great scientific and industrial importance. Ultradispersed metal particles of microelements synthesized from basic metals belong to the most commonly used types of nanomaterials. Its have found new uses in agricultural and biotechnological applications due to unique physical and chemical properties.

It is urgent to study the bioavailability and toxicity of ultrafine particles of metals of microelements for living objects, their design and safe use in vivo in animal husbandry, poultry farming and aquaculture to obtain the desired effects. Thus, this review is an analysis of the experimental data and the prospects for the use of microelements in the feed rations of fish in ultrafine form, which was achieved by reviewing the available literature.

Keywords: aquaculture, fish farming, feeding, ultrafine particles, microelements

For citation: Arinzhanova МS. Ultrafine preparations of trace metals: experience of use and prospects for use in aquaculture (review). Animal Husbandry and Fodder Production. 2022;105(1):8-30.  https://doi.org/10.33284/2658-3135-105-1-8 (In Russ.).

References

  1. Yausheva EV, Sizova EA, Miroshnikov SA, Miroshnikova EP. Adaptation changes in the organism broiler chickens to action iron nanoparticles (Conference proceedings) Ecological and physiological problems of adaptation: materials of the XVI All-Russian Symposium, (Krasnaya Polyana, 17-20 June 2015 y.). Moscow: RUDN; 2015:217-219.
  2. Akchurina IV, Poddubnaya IV, Vasylyev AA, Vilutis OY, Tarasov PS. Alternative hormonal drugs to enhance the intensity of fish growth. Vestnik of Saratov State Agrarian University named Vavilova NI. 2013;10:3-4.
  3. Arinzhanov AE. Productivity and metabolism of carp when using diets containing various forms of iron and cobalt [dissertation] Orenburg; 2013:139 p.
  4. Arinzhanov AE, Miroshnikova EP, Kilyakova YV. Use supplements and iron nanoparticles in the carp feeding. Vestnik of Orenburg State University. 2015;6(181):44-48.
  5. Miroshnikova EP, Kvan OV, Sergeeva VA, Miroshnikova MS. The influence of probiotic preparations and nanocopper on the hematological parameters of blood of chickens. Vestnik of Orenburg State University. 2017;9(209):27-33.
  6. Arinzhanov AE, Miroshnikova EP, Kilyakova YV, Kompaniets NS. Effect of ultrafine particles of Cu-Zn composition and the probiotic preparation Vetom 1.1 on growth, development and hematological parameters of the Lena sturgeon whitebait. (Conference proceedings) The state and ways of development of aquaculture in Russian Federation: materials of the V national scientific and practical conference, (Kaliningrad, 22-23 Oct. 2020 y.). edited by Vasil'eva AA. Saratov: «Amirit» Ltd.; 2020:22-26.
  7. Glushchenko NN. Physical and chemical regularities of the biological action of highly dispersed metal powders: dissertation abstract … Dr Biol. Sci. Moscow; 1988:50 p.
  8. Godymchuk AYu, Savel'eva GG, Zykova AP. Ecology of nanomaterials: tutorial. edited by Patrikeev LN and Revina AA. 3 edition. Moscow: Knowledge lab; 2020:275 p.
  9. Bogoslovskaya OA, Sizova EA, Polyakova VS, Miroshnikova SA, Leipunsky IO, Olkhovskaya IP, Glushchenko NN. Studying of safety of copper nanoparticles introduction with different physical-chemical characteristics into animals' organism. Vestnik of Orenburg State University. 2009;2(96):124-127.
  10. Miroshnikova EP, Arinzhanov AE, Kilyakova YuV, Malenkina KA, Miroshnikova MS. The use of ultrafine particles of the Cu-Zn composition with a probiotic preparation in feeding of sterlet whitebait (Conference proceedings) The state and ways of development of aquaculture in the Russian Federation in the light of import substitution and ensuring food security of the country: materials of the III national scientific and practical conf., (Kazan, 03-05 Oct. 2018) edited by Vasil'ev AA.  Saratov: «Amirit» Ltd.; 2018:198-202.
  11. Mil’to IV. Morphological effects of the organism interaction with nanomaterials in experiment. Morphology. 2010;137(4):125.
  12. Sizova EA. Metabolism and productivity of broiler chickens when using ultrafine trace elements preparations in nutrition [dissertation] Orenburg; 2017:344 p.
  13. Golovin PP, Golovina NA, Kovalenko LV, Folmanis GEh. Method of fodder preparation: pat. 2192756 Rus. Federation. Declared 28.12.2000; Published 20.11.2002, Bulletin № 32.
  14. Yausheva EV. Effect of ultrafine preparations of iron and copper on productivity and metabolism of broiler chickens. [dissertation] Orenburg; 2016:169 p.
  15. Afifi M, Saddick S, Abu Zinada OA. Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci. 2016;23(6):754-760. doi: 10.1016/j.sjbs.2016.06.008
  16. Ahmed KBA, Raman T, Veerappan A. Future prospects of antibacterial metal nano-particles as enzyme inhibitor. Mater Sci Eng: C. 2016;68:939-947. doi: 10.1016/j.msec.2016.06.034
  17. Al-Abdan MA, Bin-Jumah MN, Alarifi S. Exploration of cadmium dioxide nanopar-ticles on bioaccumulation, oxidative stress, and carcinogenic potential in Oreochromis mossambicus L. Oxid Med Cell Longev. 2020;2020:5407159. doi: 10.1155/2020/5407159
  18. Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB. Histopathological effects of water-borne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 2013;126:104-115. doi: 10.1016/j.aquatox.2012.10.005
  19. Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chem. 2006;8(5):417-432. doi: 10.1039/b517131h
  20. Al-Deriny SH, Dawood MAO, Elbialy ZI, El-Tras WF, Mohamed RA. Selenium na-noparticles and spirulina alleviate growth performance, hemato-biochemical, immune-related genes, and heat shock  protein  in  nile  tilapia (Oreochromis  niloticus).  Biol  Trace  Elem  Res. 2020;198(2):661-668. doi: 10.1007/s12011-020-02096-w
  21. Arinzhanov AE, Miroshnikova EP, Kilyakova YV. Application of ultradisperse particles and probiotic strains to reduce the level of xenobiotic elements in the carp organism. Trace Elements and Electrolytes. 2021;38(3):135.
  22. Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H. Effects of dif-ferent levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture. 2015;446:25-29. doi: 10.1016/j.aquaculture.2015.04.021
  23. Awad A, Zaglool AW, Ahmed SAA, Khalil SR. Transcriptomic profile change, im-munological response and disease resistance of Oreochromis niloticus fed with conventional and Nano-Zinc oxide dietary supplements. Fish Shellfish Immunol. 2019;93:336-343. doi: 10.1016/j.fsi.2019.07.067
  24. Bhattacharyya A. Nanoparticles-from drug delivery to insect pest control. Akshar. 2009;1(1):1-7.
  25. Bora T, Sathe P, Laxman K, Dobretsov S, Dutta J. Defect engineered visible light active zno nanorods for photocatalytic treatment of water. Catal Today. 2017;284:11-18.
  26. Cagno V, Andreozzi P, D'Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, Le Goffic R, Jones ST, Vallino M, Hodek J, Weber J, Sen S, Janeček ER, Bekdemir A, Sanavio B, Martinelli C, Donalisio M, Rameix Welti MA, Eleouet JF, Han Y, Kaiser L, Vukovic L, Tapparel C, Král P, Krol S, Lembo D, Stellacci F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater. 2018;17(2):195-203. doi: 10.1038/nmat5053
  27. Chupani L, Niksirat H, Velíšek J, Stará A, Hradilová Š, Kolařík J, Panáček A, Zusková E. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicol Environ Saf. 2018;147:110-116. doi: 10.1016/j.ecoenv.2017.08.024
  28. Connolly M, Fernández M, Conde E, Torrent F, Navas JM, Fernández-Cruz ML. Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ. 2016;551-552:334-43. doi: 10.1016/j.scitotenv.2016.01.186
  29. Mohanty BP. Nutritional value of food fish. In: Das AK, Panda D, editors) Conspectus on inland fisheries management, Chapter: # 2. Barrackpore, Kolkata 700 120, West Bengal: ICAR - Central Inland Fisheries Research Institute; 2015:15-21.
  30. Crane JK. Metal nanoparticles in infection and immunity. Immunol Invest. 2020;49(7):794-807. doi: 10.1080/08820139.2020.1776724
  31. Dar AH, Rashid N, Majid I, Hussain S, Dar MA. Nanotechnology interventions in aquaculture and seafood preservation. Crit Rev Food Sci Nutr. 2020;60(11):1912-1921. doi: 10.1080/10408398.2019.1617232
  32. Dawood MAO, Koshio S, Zaineldin AI, Van Doan H, Moustafa EM, Abdel-Daim MM, Angeles Esteban M, Hassaan MS. Dietary supplementation of selenium nanoparticles modulat-ed systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol Biochem. 2019;45(1):219-230. doi: 10.1007/s10695-018-0556-3
  33. Dawood MAO, Zommara M, Eweedah NM, Helal AI, Aboel-Darag MA. The potential role of nano-selenium and vitamin C on the performances of Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res Int. 2020;27(9):9843-9852. doi: 10.1007/s11356-020-07651-5
  34. Deng YS, Chen QJ. Affects of nano-selenium on the growth of nile tilapia (Oreochromis niloticus). Inland Aquatic Production. 2003;6:28-30.
  35. Djurisic AB, Ng AMC, Chen XY. ZnO nanostructures for optoelectronics: Material properties and device applications. Prog. Quantum Electron. 2010;34(4):191-259. doi: 10.1016/j.pquantelec.2010.04.001
  36. Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanza-deh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother. 2018;103:1018-1027. doi: 10.1016/j.biopha.2018.04.126
  37. El-Hammady AKI, Ibrahim SA, El-Kasheif MA. Synergistic reactions between vita-min E and selenium in diets of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) and their effect on the growth and liver histological structure. Egyptian Journal of Aquatic Biology and Fisheries. 2007;11(1):53-81. doi: 10.21608/ejabf.2007.1914
  38. Fasil DM, Hamdi H, Al-Barty A, Zaid AA, Parashar SKS, Das B. Selenium and zinc oxide multinutrient supplementation enhanced growth performance in  zebra  fish  by  modulating  oxidative stress and growth-related gene expression. Front Bioeng Biotechnol. 2021;9:721717. doi: 10.3389/fbioe.2021.721717
  39. Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Animal Feed Science and Technology 2009;150(3-4):259-269. doi: 10.1016/J.ANIFEEDSCI.2008.09.003
  40. Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13(1):339. doi: 10.1186/s11671-018-2728-6
  41. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nano-particles as potential antiviral agents. Molecules. 2011;16(10):8894-918. doi: 10.3390/molecules16108894
  42. Garg A, Dewangan HK. Nanoparticles as adjuvants in vaccine delivery. Crit Rev Ther Drug Carrier Syst. 2020;37(2):183-204. doi: 10.1615/CritRevTherDrugCarrierSyst.2020033273
  43. Gharaei A, Khajeh M, Khosravanizadeh A, Mirdar J, Fadai R. Fluctuation of bio-chemical, immunological, and antioxidant biomarkers in the blood of beluga (Huso huso) under effect of dietary ZnO and chitosan-ZnO NPs. Fish Physiol Biochem. 2020;46(2):547-561. doi: 10.1007/s10695-019-00726-2
  44. Ghazi S, Diab AM, Khalafalla MM, Mohamed RA. Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of nile tilapia (Oreochromis niloticus). Biol Trace Elem Res. 2022;200(1):364-374. doi: 10.1007/s12011-021-02631-3
  45. Gil-Díaz M, Ortiz LT, Costa G, et al. Immobilization and leaching of pb and ZN in an acidic soil treated with zerovalent iron nanoparticles (nZVI): physicochemical and toxicological analysis of leachates. Water Air Soil Pollut; 1990 (2014):225. doi: 10.1007/s11270-014-1990-1
  46. Gobi N, Vaseeharan B, Rekha R, Vijayakumar S, Faggio C. Bioaccumulation, cyto-toxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol Environ Saf. 2018;162:147-159. doi: 10.1016/j.ecoenv.2018.06.070
  47. Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán LM. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjug Chem. 2017;28(1):212-221. doi: 10.1021/acs.bioconjchem.6b00514
  48. Herman A, Herman AP. Nanoparticles as antimicrobial agents: their toxicity and mechanisms of action. J Nanosci Nanotechnol. 2014;14(1):946-57. doi: 10.1166/jnn.2014.9054
  49. Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Niño K, Cabral-Romero C. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomedicine. 2013;8(1):1645-52. doi: 10.2147/IJN.S38708
  50. Hossen MN, Murphy B, Garcı A-Hevia L, Bhattacharya R, Mukherjee P. Probing cellular processes using engineered nanoparticles. Bioconjug Chem. 2018;29(6):1793-1808. doi: 10.1021/acs.bioconjchem.8b00026
  51. Huh AJ, Kwon YJ. "Nanoantibiotics": a new paradigm for treating infec-tious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128-145. doi: 10.1016/j.jconrel.2011.07.002
  52. Izquierdo MS, Ghrab W, Roo J, Hamre K, Hernández-Cruz CM, Bernardini G, Terova G, Saleh R. Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquac Res. 2017;48(6):2852-2867. doi: 10.1111/are.13119
  53. Jiang X, Musyanovych A, Röcker C, Landfester K, Mailänder V, Nienhaus GU. Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. Nanoscale. 2011;3(5):2028-35. doi: 10.1039/c0nr00944j
  54. Juhász P, Lengyel S, Udvari Z, Sándor AN, Stündl L. Optimised selenium enrichment of Artemia sp. feed to improve red drum (Sciaenops ocellatus) larvae rearing. Acta Biol Hung. 2017;68(3):255-266. doi: 10.1556/018.68.2017.3.3
  55. Kaviyarasu K, Magdalane CM, Jayakumar D, Samson Y, Bashir AKH, Maaza M. High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degrada-tion of rhodamine-B dye with waste water under visible light irradiation. J King Saud Univ. Sci. 2020;32(2):1516-1522. doi: 10.1016/j.jksus.2019.12.006
  56. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802-812. doi: 10.1016/j.biopha.2018.12.146
  57. Kowalczyk M, Banach M, Rysz J. Ferumoxytol: a new era of iron deficiency ane-mia treatment for patients with chronic kidney disease. J Nephrol. 2011;24(6):717-22. doi: 10.5301/jn.5000025
  58. Kulasza M, Skuza L. Changes of gene expression patterns from aquatic organisms exposed  to  metal  nanoparticles.  Int J Environ Res Public Health. 2021;18(16):8361. doi: 10.3390/ijerph18168361
  59. Kumar N, Gupta SK, Chandan NK, Bhushan S, Singh DK, Kumar P, Kumar P, Wakchaure GC, Singh NP. Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci Rep. 2020;10(1):17883. doi: 10.1038/s41598-020-74911-2
  60. Kumar N, Krishnani KK, Gupta SK, Singh NP. Selenium nanoparticles enhanced thermal tolerance and maintain cellular stress protection of Pangasius hypophthalmus reared under lead and high temperature. Respir Physiol Neurobiol. 2017;246:107-116. doi: 10.1016/j.resp.2017.09.006
  61. Kumar N, Krishnani KK, Kumar P, Sharma R, Baitha R, Singh DK, Singh NP. Dietary nano-silver: Does support or discourage thermal tolerance and biochemical status in air-breathing fish reared under multiple stressors? J Therm Biol. 2018a;77:111-121. doi: 10.1016/j.jtherbio.2018.08.011
  62. Kumar N, Krishnani KK, Singh NP. Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biol Trace Elem Res. 2018b;186(1):267-278. doi: 10.1007/s12011-018-1285-2
  63. Kumar N, Singh DK, Bhushan S, Jamwal A. Mitigating multiple stresses in Pan-gasianodon hypophthalmus with a novel dietary mixture of selenium nanoparticles and Omega-3-fatty acid. Sci Rep. 2021;11(1):19429. doi: 10.1038/s41598-021-98582-9
  64. Kurian A, Elumalai P. Study on the impacts of chemical and green synthesized (Leucas aspera and oxy-cyclodextrin complex) dietary zinc oxide nanoparticles in Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res Int. 2021;28(16):20344-20361. doi: 10.1007/s11356-020-11992-6
  65. Kwasek K, Thorne-Lyman AL, Phillips M. Can human nutrition be improved through better fish feeding practices? a review paper. Crit Rev Food Sci Nutr. 2020;60(22):3822-3835. doi: 10.1080/10408398.2019.1708698
  66. Le KT, Fotedar R, Partridge G. Selenium and vitamin E interaction in the nutrition of yellowtail kingfish (Seriola lalandi): physiological and immune responses. Aquac Nutr. 2014;20:303-313. doi: 10.1111/anu.12079
  67. Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol. 2008;89(4):251-256. doi: 10.1016/j.aquatox.2008.07.008
  68. Liu Y, Tourbin M, Lachaize S, Guiraud P. Nanoparticles in wastewaters: Hazards, fate and remediation. Powder Technology. 2014;255:149-156. doi: 10.1016/j.powtec.2013.08.025
  69. Magdalane CM, Kaviyarasu K, Priyadharsini GMA, Bashir AKH, Mayedwa N, Matinise N, et al. Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J Mater Res Technol. 2019;8(3):2898-2909. doi: 10.1016/j.jmrt.2018.11.019
  70. Mahboub HH, Shahin K, Zaglool AW, Roushdy EM, Ahmed SAA. Efficacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African catfish Clarias gariepinus. Dis Aquat Organ. 2020;142:147-160. doi: 10.3354/dao03531
  71. Miroshnikova EP, Arinzhanov AE, Kilyakova YV. Iron and cobalt application in different forms in fish feeding. Trace Elements and Electrolytes. 2021; 38(3):135.
  72. Miroshnikova E, Arinzhanov A, Kilyakova Y, Sizova E, Miroshnikov SA. Antagonist metal alloy nanoparticles of iron and cobalt: impact on trace element metabolism in carp and chicken. Human & Veterinary Medicine. International Journal of the Bioflux Society. 2015;7(4):253-259.
  73. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WC, Chen C, Chen X, Chen X, Cheng Z, Cui D, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11(3):2313-2381. doi: 10.1021/acsnano.6b06040
  74. Perrier F, Bertucci A, Pierron F, Feurtet-Mazel A, Simon O, Klopp C, Candaudap F, Pokrovski O, Etcheverria B, Mornet S, Baudrimont M. Transfer and transcriptomic profiling in liver and brain of european eels (Anguilla anguilla) after diet-borne exposure to gold nanoparticles. Environ Toxicol Chem. 2020;39(12):2450-2461. doi: 10.1002/etc.4858
  75. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615-627. doi: 10.1038/nrd2591
  76. Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research. 2012;14(9):1109. doi: 10.1007/s11051-012-1109-9
  77. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK. A review on role of essential trace elements in health and disease. Journal of dr. NTR University of Health Sciences. 2015;4(2):75-85. doi: 10.4103/2277-8632.158577
  78. 78. Qualhato G, Rocha TL, de Oliveira Lima EC, E Silva DM, Cardoso JR, Koppe Grisolia C, de Sabóia-Morais SMT. Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata. Chemosphere. 2017;183:305-314. doi: 10.1016/j.chemosphere.2017.05.061
  79. Rasmussen JW, Martinez E, Louka P, Wingettt DG. Zinc oxide nanoparticles for se-lective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Delivery. 2010;7(9):1063-1077. doi: 10.1517/17425247.2010.502560
  80. Reddy YS, Magdalane CM, Kaviyarasu K, Mola GT, Kennedy J, Maaza M. Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller's earth. J Phys Chem Solids. 2018;123:43-51. doi: 10.1016/j.jpcs.2018.07.009
  81. Rohner F, Ernst FO, Arnold M, Hilbe M, Biebinger R, Ehrensperger F, Pratsinis SE, Langhans W, Hurrell RF, Zimmermann MB. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J Nutr. 2007;137(3):614-619. doi: 10.1093/jn/137.3.614
  82. Saffari S, Keyvanshokooh S, Zakeri M, Johari SA, Pasha-Zanoosi H. Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio) Aquac Nutr. 2017;23(3):611-617. doi: 10.1111/anu.12428
  83. Sargent JF. Nanotechnology: a policy primer. Congressional Research Service. Sep-tember 15, 2016: 25 p.
  84. Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M. Recent progress in applications of nanoparticles in fish medicine: A review. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12(3):701-710. doi: 10.1016/j.nano.2015.11.005
  85. Shah BR, Mraz J. Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac. 2020;12:925-942. doi: 10.1111/raq.12356
  86. Singh M, Kumar M, Kalaivani R, Manikandan S, Kumaraguru AK. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng. 2013;36(4):407-415. doi: 10.1007/s00449-012-0797-y
  87. Stanca L, Petrache SN, Serban AI, Staicu AC, Sima C, Munteanu MC, Zărnescu O, Dinu D, Dinischiotu A. Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications. Nanoscale Res Lett. 2013;8(1):254. doi: 10.1186/1556-276X-8-254
  88. Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO na-noparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol. 2015;26:1294-1299. doi: 10.1016/j.apt.2015.07.001
  89. Thangapandiyan S, Monika S. Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita. Biol Trace Elem Res. 2020;195(2):636-647. doi: 10.1007/s12011-019-01873-6
  90. Torres SK, Campos VI, León CG, Rodríguez-Llamazares SM, Rojas SM, González M, Smith C, Mondaca MA. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res. 2012;14(11):1236. doi: 10.1007/s11051-012-1236-3
  91. Vega-Jiménez AL, Almaguer-Flores A, Flores-Castañeda M, Camps E, Uribe-Ramírez M, Aztatzi-Aguilar OG, De Vizcaya-Ruiz A. Bismuth subsalicylate nanoparticles with an-aerobic antibacterial activity for dental applications. Nanotechnology. 2017;28(43):435101. doi: 10.1088/1361-6528/aa8838
  92. Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere. 2008;73(7):1121-1128. doi: 10.1016/j.chemosphere.2008.07.040
  93. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;(12):1227-1249. doi: 10.2147/IJN.S121956
  94. Zhai X, Zhang C, Zhao G, Stoll S, Ren F, Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J Nanobiotechnology. 2017;15(1):4. doi: 10.1186/s12951-016-0243-4
  95. Zhang W, Zhu C, Xiao F, Liu X, Xie A, Chen F, Dong P, Lin P, Zheng C, Zhang H, Gong H, Wu Y. pH-controlled release of antigens using mesoporous silica nanoparticles delivery system for developing a fish oral vaccine. Front Immunol. 2021;12:644396. doi: 10.3389/fimmu.2021.644396
  96. Zhou X, Wang Y, Gu Q, Li W. Effects of different dietary selenium sources (Seleni-um nanoparticle and selenomethionine) on growth performance, muscle composition and glutathi-one peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquac. 2009;291(1-2):78-81. doi: 10.1016/j.aquaculture.2009.03.007

Information about the authors:

Maria S Arinzhanova, 1st year postgraduate student, Junior Researcher of Farm Animal Feeding and Feed Technology Department named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, 29, 9 Yanvarya St., tel. 89228675710.

The article was submitted 10.01.2022; approved after reviewing 28.01.2022; accepted for publication 21.03.2022.

Download