Svetlana V Notova, Olga V Marshinskaya, Tatyana V Kazakova, Albina M Miftakhova

Animal Husbandry and Fodder Production. 2022. Vol. 105, no 3. Р. 19-33.

doi:10.33284/2658-3135-105-3-19

 Review article

 Study of the effect of heavy metals and their mixtures on the body (review)

 Svetlana V Notova1, Olga V Marshinskaya2, Tatyana V Kazakova3, Albina M Miftakhova4

1,2,3,4Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1snotova@mail.ru, https://orcid.org/0000-0002-6378-4522

2m.olja2013@yandex.ru, https://orcid.org/0000-0002-5611-5128

3vaisvais13@mail.ru, https://orcid.org/0000-0003-3717-4533

4miftakhova_02@bk.ru, https://orcid.org/0000-0002-6106-6041

 Abstract. The impact of metals on living systems is a global problem. In recent decades, the amount of heavy metals entering the environment in the form of industrial and household waste and as a result of man-made disasters, has increased tenfold. Modern pollution almost always implies the presence[1] of a whole complex of pollutants in the environment, the combined effect of which increases the adverse effect on human and animal health. Despite the fact that the negative effects of exposure to each metal are widely known, there is still insufficient information about the effects of heavy metal mixtures on a living organism. The presented review systematizes data on the possible biological effects of exposure to mixtures of heavy metals. The research results show that Pb, As, Cd, Hg and Mn are among the most toxic metals. These chemical elements have carcino-, immuno-, embryo-/terato-, sperm-, nephro- and neurotoxicity. We made a review of published studies in the scientometric databases PubMed, Web of Science and Scopus for the period from 2003 to the present. Based on the analysis, the importance of conducting research on the combined effects of metals on a living organism is shown.

Keywords: heavy metals, metal complex, metallomics, trace elements, toxic elements

Acknowledgments: the work was performed in accordance to the plan of research works for 2019-2022 FSBRI FRC BST RAS (No. 0526-2022-0011).

For citation: Notova SV, Marshinskaya OV, Kazakova TV, Miftakhova AM. Study of the influence of heavy metals and their mixtures on the body (review). Animal Husbandry and Fodder Production. 2022:105(3):19-33. https://doi.org/10.33284/2658-3135-105-3-19

References

  1. Gajdaj EА, Matichin AА, Gajdaj DS, Makarova MN. Caenorhabditis elegans as a model object for biomedical studies. Laboratory Animals for Science. 2018;4:15-25.
  2. Gavrilov YuA, Gavrilova GA, Sokolnikova TA. Some ecological aspects of autoimmune pathology in cattle. Bulletin of Altai State Agricultural University. 2012;1(87):24-27.
  3. Saptarova LM, Kamilov Kh, Knyazeva OA, Kogina EN. Accumulation of heavy metals in liver of rats in the process of chronic intoxication by copper-zinc sulfide ore. Bulletin of the Bashkir University. 2017;22(1):90-92.
  4. Notova SV, Kazakova TV, Marshanskaya OV. Modern methods and equipment for assessing the behavior of laboratory animals (review). Animal Husbandry and Fodder Production. 2018;101(1):106-115.
  5. Abadin H, Ashizawa A, Stevens YW, Llados F, Diamond G, Sage G, Citra M, Quinones A, Bosch SJ, Swarts SG. Toxicological Profile for Lead. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2007:581 p.
  6. Abd-Elhakim YM, El Bohi KM, El Sharkawy NI, Ghali MA, Haseeb S. The impacts of individual and combined exposure to cadmium and lead on intraocular pressure, electroretinography, and residual changes in the rabbit eyes. Environ Sci Pollut Res Int. 2019;26(32):33321-33328. doi: 10.1007/s11356-019-06446-7
  7. Andrade V, Mateus ML, Batoréu MC, Aschner M, Dos Santos AM. Toxic mechanisms underlying motor activity changes induced by a mixture of lead, arsenic and manganese. EC Pharmacol Toxicol. 2017;3(2):31-42.
  8. ATSDR (Agency for Toxic Substances and Disease Registry). [Internet] Substance Priority List. 2019. Available from: https://www.atsdr.cdc.gov/spl/index.html (cited 2022 Aug 05).
  9. Azevedo BF, Furieri LB, Peçanha FM, Wiggers GA, Vassallo FP, Simões RM, et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed. Biotechnol. 2012;2012:949048. doi: 10.1155/2012/949048
  10. Betharia S, Maher TJ. Neurobehavioral effects of lead and manganese individually and in combination in developmentally exposed rats. Neurotoxicology. 2012;33(5):1117-27. doi: 10.1016/j.neuro.2012.06.002
  11. Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ Int. 2018;120:404-420. doi: 10.1016/j.envint.2018.08.013
  12. Boskabady MH, Tabatabai SA, Farkhondeh T. Inhaled lead affects lung pathology and inflammation in sensitized and control guinea pigs. Environ Toxicol. 2016;31(4):452-460. doi: 10.1002/tox.22058
  13. Bottino C, Vázquez M, Devesa V, Laforenza U. Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. J Appl Toxicol. 2016;36(1):113-120. doi: 10.1002/jat.3151
  14. Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport of toxic metals. Toxicology and Applied Pharmacology. 2005;204(3):274-308. doi: 10.1016/j.taap.2004.09.007
  15. Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltо MD. Drosophila melanogaster models of metal-related human diseases and metal toxicity. Int J Mol Sci. 2017;18(7):1456. doi: 10.3390/ijms18071456
  16. CDC (Centers for Disease Control and Prevention). Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables. 2019;1:866 р. doi: 10.15620/cdc75822
  17. Chen R, Xu Y, Xu C, Shu Y, Ma S, Lu C, Mo X. Associations between mercury exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in US adolescents. Environ Sci Pollut Res Int. 2019;26(30):31384-31391. doi: 10.1007/s11356-019-06224-5
  18. Cheng JP, Wang WH, Jia JP, Zheng M, Shi W, Lin XY. Expression of c-fos in rat brain as a prelude marker of central nervous system injury in response to methylmercury-stimulation. Biomed Environ Sci. 2006;19(1):67-72.
  19. Cobbina SJ, Chen Y, Zhou Z, Wu X, Zhao T, Zhang Z, Feng W, Wang W, Li Q, Wu X, Yang L. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J Hazard Mater. 2015;294:109-120. doi: 10.1016/j.jhazmat.2015.03.057
  20. Costa M. Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol Appl Pharmacol. 2019;375:1-4. doi: 10.1016/j.taap.2019.05.006
  21. Danadevi K, Rozati R, Reddy PP, Grover P. Semen quality of Indian welders occupationally exposed to nickel and chromium. Reprod Toxicol. 2003;17(4):451-456. doi: 10.1016/s0890-6238(03)00040-6
  22. Dhatrak SV, Nandi SS. Risk assessment of chronic poisoning among Indian metallic miners. Indian J Occup Environ Med. 2009;13(2):60-64. doi: 10.4103/0019-5278.55121
  23. Djordjevic VR, Wallace DR, Schweitzer A, Boricic N, Knezevic D, Matic S, Grubor N, Kerkez M, Radenkovic D, Bulat Z, Antonijevic B, Matovic V, Buha A. Environmental cadmium exposure and pancreatic cancer: Evidence from case control, animal and in vitro studies. Environ Int. 2019;128:353-361. doi: 10.1016/j.envint.2019.04.048
  24. Dongre NN, Suryakar AN, Patil AJ, Ambekar JG, Rathi DB. Biochemical effects of lead exposure on systolic & diastolic blood pressure, heme biosynthesis and hematological parameters in automobile workers of north karnataka (India). Indian J Clin Biochem. 2011;26(4):400-406. doi: 10.1007/s12291-011-0159-6
  25. Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, Rudisill C. Toxicological profile for cadmium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2012:430 p.
  26. Fay MJ, Alt LAC, Ryba D, Salamah R, Peach R, Papaeliou A, Zawadzka S, Weiss A, Patel N, Rahman A, Stubbs-Russell Z, Lamar PC, Edwards JR, Prozialeck WC. Cadmium Nephrotoxicity is associated with altered microrna expression in the rat renal cortex. Toxics. 2018;6(1):16. doi: 10.3390/toxics6010016
  27. Fiati Kenston SS, Su H, Li Z, Kong L, Wang Y, Song X, Gu Y, Barber T, Aldinger J, Hua Q, Li Z, Ding M, Zhao J, Lin X. The systemic toxicity of heavy metal mixtures in rats. Toxicol Res (Camb). 2018;7(3):396-407. doi: 10.1039/c7tx00260b
  28. Figà-Talamanca I, Petrelli G, Tropeano R, Papa G, Boccia G. Fertility of male workers of the Italian mint. Reprod Toxicol. 2000;14(4):325-330. doi: 10.1016/s0890-6238(00)00083-6
  29. Gazwi HSS, Yassien EE, Hassan HM. Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol Environ Saf. 2020;192:110297. doi: 10.1016/j.ecoenv.2020.110297
  30. Green AJ, Planchart A. The neurological toxicity of heavy metals: a fish perspective. Comp Biochem Physiol Part C: Toxicol Pharmacol. 2018;208:12-19. doi: 10.1016/j.cbpc.2017.11.008
  31. Guerrero-Castilla A, Olivero-Verbel J, Marrugo-Negrete J. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals. Mutat Res Genet Toxicol Environ Mutagen. 2014;762:24-29. doi: 10.1016/j.mrgentox.2013.12.005
  32. Li X, Brejnrod AD, Ernst M, Rykær M, Herschend J, Olsen NMC, Dorrestein PC, Rensing C, Sørensen SJ. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ Int. 2019;126:454-467. doi: 10.1016/j.envint.2019.02.048
  33. Moulis JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals. 2010;23(5):877-896. doi: 10.1007/s10534-010-9336-y
  34. Oladipo OO, Ayo JO, Ambali SF, Mohammed B. Evaluation of hepatorenal impairments in Wistar rats coexposed to low-dose lead, cadmium and manganese: insights into oxidative stress mechanism. Toxicol Mech Methods. 2016;26(9):674-684. doi: 10.1080/15376516.2016.1223242
  35. Orr SE, George HS, Barnes MC, Mathis TN, Joshee L, Barkin J, Kiefer AM, Seney CS, Bridges CC. Co-administration of selenium with inorganic mercury alters the disposition of mercuric ions in rats. Biol Trace Elem Res. 2020;195(1):187-195. doi: 10.1007/s12011-019-01835-y
  36. Orr TE, Mann DR. Role of glucocorticoids in the stress-induced suppression of testicular steroidogenesis in adult male rats. Horm Behav. 1992;26(3):350-363. doi: 10.1016/0018-506x(92)90005-g
  37. Pan C, Liu HD, Gong Z, Yu X, Hou XB, Xie DD, Zhu XB, Li HW, Tang JY, Xu YF, Yu JQ, Zhang LY, Fang H, Xiao KH, Chen YG, Wang JY, Pang Q, Chen W, Sun JP. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci Rep. 2013;3:2333. doi: 10.1038/srep02333
  38. Papp A, Pecze L, Szabó A, Vezér T. Effects on the central and peripheral nervous activity in rats elicited by acute administration of lead, mercury and manganese, and their combinations. J Appl Toxicol. 2006;26(4):374-380. doi: 10.1002/jat.1152
  39. Pastuhov SI, Shimizu T, Hisamoto N. Heavy metal stress assay of Caenorhabditis elegans. Bio Protoc. 2017;7(11):e2312. doi: 10.21769/BioProtoc.2312
  40. Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Zhang R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 2015;11(7):1037-1051. doi: 10.1080/15548627.2015.1052208
  41. Planchart A, Green A, Hoyo C, Mattingly CJ. Heavy metal exposure and metabolic syndrome: evidence from human and model system studies. Curr Environ Health Rep. 2018;5(1):110-124. doi: 10.1007/s40572-018-0182-3
  42. Riaz MA, Nisa ZU, Anjum MS, Butt H, Mehmood A, Riaz A, Akhtar ABT. Assessment of metals induced histopathological and gene expression changes in different organs of non-diabetic and diabetic rats. Sci Rep. 2020;10(1):5897. doi: 10.1038/s41598-020-62807-0
  43. Richardson JB, Dancy BCR, Horton CL, Lee YS, Madejczyk MS, Xu ZZ, Ackermann G, Humphrey G, Palacios G, Knight R, Lewis JA. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018;8(1):6578. doi: 10.1038/s41598-018-24931-w
  44. Schutte R, Nawrot TS, Richart T, Thijs L, Vanderschueren D, Kuznetsova T, Van Hecke E, Roels HA, Staessen JA. Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect. 2008;116(6):777-783. doi: 10.1289/ehp.11167
  45. Sharma BM, Sáňka O, Kalina J, Scheringer M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environ Int. 2019;125:300-319. doi: 10.1016/j.envint.2018.12.016
  46. Struzynska L, Dabrowska-Bouta B, Koza K, Sulkowski G. Inflammation-like glial response in lead-exposed immature rat brain. Toxicol Sci. 2007;95(1):156-162. doi: 10.1093/toxsci/kfl134
  47. Wang J, Zhu H, Yang Z, Liu Z. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol. 2013;45(4):395-398. doi: 10.4103/0253-7613.115015
  48. Wang S, Li Q, Gao Y, Zhou Z, Li Z. Influences of lead exposure on its accumulation in organs, meat, eggs and bone during laying period of hens. Poult Sci. 2021;100(8):101249. doi: 10.1016/j.psj.2021.101249
  49. Wang Y, Mandal AK, Son YO, Pratheeshkumar P, Wise JTF, Wang L, Zhang Z, Shi X, Chen Z. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol Appl Pharmacol. 2018;353:23-30. doi: 10.1016/j.taap.2018.06.003
  50. Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR, Garey JD, Zaccaria K, Citra M. Toxicological Profile for Manganese. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2012:506 р.
  51. Williams RJP. Chemical selection of elements by cells. Coordination Chemistry Reviews. 2001;216-217:583-595. doi: 10.1016/S0010-8545(00)00398-2
  52. Yasutake A, Sawada M, Shimada A, Satoh M, Tohyama C. Mercury accumulation and its distribution to metallothionein in mouse brain after sub-chronic pulse exposure to mercury vapor. Arch Toxicol. 2004;78(9):489-495. doi: 10.1007/s00204-004-0572-1
  53. Zartarian V, Xue J, Tornero-Velez R, Brown J. Children's lead exposure: a multimedia modeling analysis to guide public health decision-making. Environ Health Perspect. 2017;125(9):097009. doi: 10.1289/EHP1605
  54. Zhang C, Gan C, Ding L, Xiong M, Zhang A, Li P. Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. Ecotoxicol Environ Saf. 2020;189:109987. doi: 10.1016/j.ecoenv.2019.109987
  55. Zhou F, Yin G, Gao Y, Liu D, Xie J, Ouyang L, Fan Y, Yu H, Zha Z, Wang K, Shao L, Feng C, Fan G. Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. Environ Int. 2019;133(Pt B):105192. doi: 10.1016/j.envint.2019.105192

Information about authors:

Svetlana V Notova, Dr. Sci. (Medicine), Professor, Acting Head of the Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000.

Olga V Marshinskaya, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000.

Tatyana V Kazakova, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics  in Animal Husbandry, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000.

Albina M Miftakhova, Research Laboratory Assistant, Laboratory of Molecular Genetic Research and Metallomics  in Animal Husbandry, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000.

The article was submitted 12.08.2022; approved after reviewing 09.09.2022; accepted for publication 12.09.2022.

Download