Elena P Miroshnikova, Alexei N Sizentsov, Azamat E Arinzhanov, Yulia V Kilyakova

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 1. Р. 21-34.

 

doi: 10.33284/2658-3135-106-1-21

 

Review article

Review of meta-analytic empirical data on the use of essential element nanoparticles

in aquaculture

 

Elena P Miroshnikova1, Alexei N Sizentsov2, Azamat E Arinzhanov3, Yulia V Kilyakova

1,2,3,4Orenburg State University, Orenburg, Russia

1elenaakva@rambler.ru, https://orcid.org/0000-0003-3804-5151

2asizen@mail.ru, https://orcid.org/0000-0003-1099-3117

3arin.azamat@mail.ru, https://orcid.org/0000-0001-6534-7118

4fish-ka06@mail.ru, https://orcid.org/0000-0002-2385-264X

 

Abstract. The search for alternative biologically active compounds, as a replacement for feed antibiotics, chemotherapeutic antimicrobial and antitumor drugs, contributes to the intensive development of scientific areas in the field of phytotherapy and nanotechnology. The high potential of using phytobiotics as antimicrobials, growth promoters, antioxidant, enzymatic and immunological activities has been studied comprehensively over the past decades. Nanotechnology is a relatively young, intensively developing scientific area that deals not only with the synthesis but also with the practical use of new materials. Separately, it is worth noting the high level of interest of researchers from various countries in the field of directed «green» synthesis of ultrafine particles, for example, the result of the request https://pubmed.ncbi.nlm.nih.gov/?term=green+nanoparticle+synthesis produces more than 1000 scientific review and experimental articles dating predominantly from 2017 to 2022. In particular, a large number of works are devoted to the use of various compounds of essential elements in the form of salts, UFP obtained by physical and chemical methods, as well as by the method of directed «green» synthesis using plant extracts in feeding hydrobionts. Most researchers agree that this method is environmentally safe, methodologically simple to perform, and provides the yield of biologically active compounds that include nanosized metal particles in their structure. The use of such compounds in aquaculture, according to meta-analytical data, provides an increase in growth rates, a decrease in the feed conversion rate, an increase in enzymatic, antioxidant and immunological activity, increasing the level of survival and resistance to adverse environmental factors.

Keywords: targeted «green» synthesis of ultrafine particles, nanoparticles, meta-analytical data, essential elements, aquaculture, fish feeding

Acknowledgments:  the  work  was  supported  by  the  Russian  Science  Foundation,  Project  No. 22-26-00281.

For citation: Miroshnikova ЕР, Sizentsov AN, Аrinzhanov АЕ, Kilyakova YuV.  Review of meta-analytic empirical data on the use of essential element nanoparticles in aquaculture. Animal Husbandry and Fodder Production. 2023;106(1):21-34. (In Russ.). https://doi.org/10.33284/2658-3135-106-1-21

 

References

 
  1. Akter S, Jahan N, Rohani MF, Akter Y, Shahjahan M. Chromium supplementation in diet enhances growth and feed utilization of striped catfish (Pangasianodon hypophthalmus). Biol Trace Elem Res. 2021;199(12):4811-4819. doi: 10.1007/s12011-021-02608-2
  2. Alam MW, Al Qahtani HS, Aamir M, Abuzir A, Khan MS, Albuhulayqah M, Mushtaq S, Zaidi N, Ramya A. Phyto synthesis of manganese-doped zinc nanoparticles using Carica papaya leaves: structural properties and its evaluation for catalytic, antibacterial and antioxidant activities. Polymers (Basel). 2022;14(9):1827. doi: 10.3390/polym14091827
  3. Aldalbahi A, Alterary S, Ali Abdullrahman Almoghim R, Awad MA, Aldosari NS, Fahad Alghannam S, Nasser Alabdan A, Alharbi S, Ali Mohammed Alateeq B, Abdulrahman Al Mohsen A, Alkathiri MA, Abdulrahman Alrashed R. Greener synthesis of zinc oxide nanoparticles: characterization and multifaceted applications. Molecules. 2020;25(18):4198. doi: 10.3390/molecules25184198
  4. Alhujaily M, Albukhaty S, Yusuf M, Mohammed MKA, Sulaiman GM, Al-Karagoly H, Alyamani AA, Albaqami J, AlMalki FA. Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering (Basel). 2022;9(10):541. doi: 10.3390/bioengineering9100541
  5. Al Jabri H, Saleem MH, Rizwan M, Hussain I, Usman K, Alsafran M. Zinc oxide nanoparticles and their biosynthesis: overview. Life (Basel). 2022;12(4):594. doi: 10.3390/life12040594
  6. Alyamani AA, Albukhaty S, Aloufi S, AlMalki FA, Al-Karagoly H, Sulaiman GM. Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules. 2021;26(20):6140. doi: 10.3390/molecules26206140
  7. Aminuzzaman M, Ying LP, Goh WS, Watanabe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater. Sci. 2018;41:50. doi: 1007/s12034-018-1568-4
  8. Asaikkutti A, Bhavan PS, Vimala K, Karthik M, Cheruparambath P. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J Trace Elem Med Biol. 2016;35:7-17. doi: 10.1016/j.jtemb.2016.01.005
  9. Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture. 2015;446:25-29. doi: 10.1016/j.aquaculture.2015.04.021
  10. Behera T, Swain P, Rangacharulu PV, et al. Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeo rohita Appl Nanosci. 2014;4:687-694. doi: 10.1007/s13204-013-0251-8
  11. Chan YB, Selvanathan V, Tey LH, Akhtaruzzaman M, Anur FH, Djearamane S, Watanabe A, Aminuzzaman M. Effect of calcination temperature on structural, morphological and optical properties of copper oxide nanostructures derived from Garcinia mangostana leaf extract. Nanomaterials (Basel). 2022;12(20):3589. doi: 10.3390/nano12203589
  12. Chen J, Sun R, Pan C, Sun Y, Mai B, Li QX. Antibiotics and food safety in aquaculture. J Agric Food Chem. 2020;68(43):11908-11919. doi: 10.1021/acs.jafc.0c03996
  13. Dawood MAO, Alagawany M, Sewilam H. The role of zinc microelement in aquaculture: a review. Biol Trace Elem Res. 2022;200(8):3841-3853. doi: 10.1007/s12011-021-02958-x
  14. Dawood MAO. Dietary copper requirements for aquatic animals: a review. Biol Trace Elem Res. 2022;200(12):5273-5282. doi: 10.1007/s12011-021-03079-1
  15. Diab AM, Shokr BT, Shukry M, Farrag FA, Mohamed RA. Effects of dietary supplementation with green-synthesized zinc oxide nanoparticles for candidiasis control in Oreochromis niloticus. Biol Trace Elem Res. 2022;200(9):4126-4141. doi: 10.1007/s12011-021-02985-8
  16. Fuku X, Diallo A, Maaza M. Nanoscaled electrocatalytic optically modulated ZnO nanoparticles through green process of Punica granatum and their antibacterial activities. International Journal of Electrochemistry. 2016;2016:4682967. doi: https://doi.org/10.1155/2016/4682967
  17. Ghaniem S, Nassef E, Zaineldin AI, Bakr A, Hegazi S. A Comparison of the beneficial effects of inorganic, organic, and elemental nano-selenium on nile tilapia: growth, immunity, oxidative status, gut morphology, and immune gene expression. Biol Trace Elem Res. 2022;200(12):5226-5241. doi: 10.1007/s12011-021-03075-5
  18. Ghazi S, Diab AM, Khalafalla MM, Mohamed RA. Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of nile tilapia (Oreochromis niloticus). Biol Trace Elem Res. 2022;200(1):364-374. doi: 10.1007/s12011-021-02631-3
  19. Gur T, Meydan I, Seckin H, Bekmezci M, Sen F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ Res. 2022;204(Pt A):111897. doi: 10.1016/j.envres.2021.111897
  20. Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environ Sci Pollut Res Int. 2022;29(8):11054-11075. doi: 10.1007/s11356-021-17825-4
  21. Ibrahim MS, El-Gendi GMI, Ahmed AI, El-Haroun ER, Hassaan MS. Nano zinc versus bulk zinc form as dietary supplied: effects on growth, intestinal enzymes and topography, and hemato-biochemical and oxidative stress biomarker in nile tilapia (Oreochromis niloticus Linnaeus, 1758). Biol Trace Elem Res. 2022;200(3):1347-1360. doi: 10.1007/s12011-021-02724-z
  22. Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiology O 2020;9(9):e1035. doi: 10.1002/mbo3.1035
  23. Jayachandran А, Ashwini TR, Nair AS. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophys Rep. 2021;26:100995. doi: 10.1016/j.bbrep.2021.100995
  24. Jayappa MD, Ramaiah CK, Kumar MAP, Suresh D, Prabhu A, Devasya RP, Sheikh S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa : characterization and their applications. Appl Nanosci. 2020;10(8):3057-3074. doi: 10.1007/s13204-020-01382-2
  25. Khan MZH, Hossain MMM, Khan M, Ali MS, Aktar S, Moniruzzaman M, Khan M. Influence of nanoparticle-based nano-nutrients on the growth performance and physiological parameters in tilapia (Oreochromis niloticus). RSC Adv. 2020;10(50):29918-29922. doi: 10.1039/d0ra06026g
  26. Kumar N, Krishnani KK, Kumar P, Singh NP. Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. J Therm Biol. 2017;70(Pt B):61-68. doi: 10.1016/j.jtherbio.2017.10.003
  27. Kumar N, Krishnani KK, Gupta SK, Sharma R, Baitha R, Singh DK, Singh NP. Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalmus. Fish Shellfish Immunol. 2018;78:289-298. doi: 10.1016/j.fsi.2018.04.051
  28. Kumar N, Singh NP. Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovar sobria in fish reared under multiple stressors. Fish Shellfish Immunol. 2019;84:38-47. doi: 10.1016/j.fsi.2018.09.065
  29. Kumar N, Singh DK, Bhushan S, Jamwal A. Mitigating multiple stresses in Pangasianodon hypophthalmus with a novel dietary mixture of selenium nanoparticles and Omega-3-fatty acid. Sci Rep. 2021;11(1):19429. doi: 10.1038/s41598-021-98582-9
  30. Kurian A, Elumalai P. Study on the impacts of chemical and green synthesized (Leucas aspera and oxy-cyclodextrin complex) dietary zinc oxide nanoparticles in Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res Int. 2021;28(16):20344-20361. doi: 10.1007/s11356-020-11992-6
  31. Liu Y, Wu Y, Wu J, Li X, Yu L, Xie K, Zhang M, Ren L, Ji Y, Li Y. Exposure to veterinary antibiotics via food chain disrupts gut microbiota and drives increased Escherichia coli virulence and drug resistance in young adults. Pathogens. 2022;11(9):1062. doi: 10.3390/pathogens11091062
  32. Lyimo GV, Ajayi RF, Maboza E, Adam RZ. A green synthesis of zinc oxide nanoparticles using Musa Paradisiaca and Rooibos extracts. 2022;9:101892. doi: 10.1016/j.mex.2022.101892
  33. Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N, Parajuli N. Current research on zinc oxide nanoparticles: synthesis, characterization, and biomedical applications. Nanomaterials (Basel). 2022;12(17):3066. doi: 10.3390/nano12173066
  34. Mohammadi C, Mahmud S, Abdullah SM, Mirzaei Y. Green synthesis of ZnO nanoparticles using the aqueous extract of Euphorbia petiolata and study of its stability and antibacterial properties. Moroc J Chem. 2017;5(3):476-484. doi: 48317/IMIST.PRSM/morjchem-v5i3.8974
  35. Muralisankar T, Saravana Bhavan P, Radhakrishnan S, Seenivasan C, Srinivasan V. The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J Trace Elem Med Biol. 2016;34:39-49. doi: 10.1016/j.jtemb.2015.12.003
  36. Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A. Combined or individual effects of dietary vitamin E and selenium nanoparticles on humoral immune status and serum parameters of rainbow trout (Oncorhynchus mykiss) under high stocking density. Aquaculture. 2017;474:40-47. doi: 10.1016/j.aquaculture.2017.03.036
  37. Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, Atakpa EO, Agu CV, Okoye CO. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environ Sci Pollut Res Int. 2022;29(46):69241-69274. doi: 10.1007/s11356-022-22319-y
  38. Okpara EC, Fayemi OE, Sherif EM, Junaedi H, Ebenso EE. Green wastes mediated zinc oxide nanoparticles: synthesis, characterization and electrochemical studies. Materials (Basel). 2020;13(19):4241. doi: 10.3390/ma13194241
  39. Osuntokun J, Onwudiwe DC, Ebenso EE. Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea var. italica and the photocatalytic activity. Green Chem Lett Rev. 2019;12:4, 444-457. doi: 10.1080/17518253.2019.1687761
  40. Paulpandian P, Beevi IS, Somanath B, Kamatchi RK, Paulraj B, Faggio C. Impact of Camellia sinensis iron oxide nanoparticle on growth, hemato-biochemical and antioxidant capacity of blue gourami (Trichogaster trichopterus) fingerlings. Biol Trace Elem Res. 2023; 201(1):412-424. doi: 10.1007/s12011-022-03145-2
  41. Rajeshkumar S, Santhoshkumar J, Jule LT, Ramaswamy K. Phytosynthesis of titanium dioxide nanoparticles using king of bitter Andrographis paniculata and its embryonic toxicology evaluation and biomedical potential. Bioinorg Chem Appl. 2021;2021:6267634. doi: 10.1155/2021/6267634
  42. Rathore SS, Murthy HS, Mamun MA, Nasren S, Rakesh K, Kumar BTN, Abhiman PB, Khandagale AS. Nano-selenium supplementation to ameliorate nutrition physiology, immune response, antioxidant system and disease resistance against Aeromonas hydrophila in monosex nile tilapia (Oreochromis niloticus). Biol Trace Elem Res. 2021;199(8):3073-3088. doi: 10.1007/s12011-020-02416-0
  43. Rohani MF, Bristy AA, Hasan J, Hossain MK, Shahjahan M. Dietary zinc in association with vitamin e promotes growth performance of nile tilapia. Biol Trace Elem Res. 2022;200(9):4150-4159. doi: 10.1007/s12011-021-03001-9
  44. Satgurunathan T, Bhavan PS, Joy RDS. Green synthesis of chromium nanoparticles and their effects on the growth of the prawn Macrobrachium rosenbergii post-larvae. Biol Trace Elem Res. 2019;187(2):543-552. doi: 10.1007/s12011-018-1407-x
  45. Satgurunathan T, Bhavan PS, Kalpana R, Jayakumar T, Sheu JR, Manjunath M. Influence of garlic (Allium sativum) clove-based selenium nanoparticles on status of nutritional, biochemical, enzymological, and gene expressions in the freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Biol Trace Elem Res. 2022. doi: 10.1007/s12011-022-03300-9
  46. Shahpar Z, Johari SA. Effects of dietary organic, inorganic, and nanoparticulate zinc on rainbow trout, Oncorhynchus mykiss Biol Trace Elem Res. 2019;190(2):535-540. doi: 10.1007/s12011-018-1563-z
  47. Srinivasan V, Bhavan PS, Rajkumar G, Satgurunathan T, Muralisankar T. Dietary supplementation of magnesium oxide (MgO) nanoparticles for better survival and growth of the freshwater prawn Macrobrachium rosenbergii post-larvae. Biol Trace Elem Res. 2017;177(1):196-208. doi: 10.1007/s12011-016-0855-4
  48. Thangapandiyan S, Monika S. Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita. Biol Trace Elem Res. 2020;195(2):636-647. doi: 10.1007/s12011-019-01873-6
  49. Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine. 2018; 14:87-100. doi: 10.2147/IJN.S186888
  50. Yang J, Wang T, Lin G, Li M, Zhang Y, Mai K. The assessment of dietary organic zinc on zinc homeostasis, antioxidant capacity, immune response, glycolysis and intestinal microbiota in white shrimp (Litopenaeus vannamei Boone, 1931). Antioxidants (Basel). 2022;11(8):1492. doi: 10.3390/antiox11081492
  51. Yanez-Lemus F, Moraga R, Smith CT, Aguayo P, Sánchez-Alonzo K, García-Cancino A, Valenzuela A, Campos VL. Selenium nanoparticle-enriched and potential probiotic, Lactiplantibacillus plantarum S14 strain, a diet supplement beneficial for rainbow trout. Biology (Basel). 2022;11(10):1523. doi: 10.3390/biology11101523
  52. Younus N, Zuberi A, Rashidpour A, Metón I. Dietary cobalt supplementation improves growth and body composition and induces the expression of growth and stress response genes in Tor putitora. Fish Physiol Biochem. 2020;46(1):371-381. doi: 10.1007/s10695-019-00723-5
  53. Younus N, Zuberi A. Significance of extrinsic factors for the optimization of dietary cobalt supplementation in Tor putitora fingerlings. Fish Physiol Biochem. 2022;48(4):883-897. doi: 10.1007/s10695-022-01089-x

Information about the authors:

Elena P Miroshnikova, Dr. Sci. (Biology), Professor, Head of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, tel.: 8-987-862-98-86.

Aleksey N Sizentsov, Cand. Sci. (Biology), Associate Professor, Associate Professor of the Department of Biochemistry and Microbiology, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-905-880-36-04.

Azamat E Arinzhanov, Cand. Sci. (Agriculture), Associate Professor of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-922-806-33-43.

Yulia V Kilyakova, Cand. Sci. (Biology), Associate Professor of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-961-920-40-64.

 

The article was submitted 04.12.2022; approved after reviewing 09.02.2023; accepted for publication 20.03.2023.

Download