Ksenia S Nechitailo, Elena A Sizova, Daniil E Shoshin

 

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 1. Р. 8-20.

doi:10.33284/2658-3135-106-1-8

 

Original article

Evaluation of the biological activity of a complex of ultrafine copper particles and an

enzymatic additive using bacterial test system

 

Ksenia S Nechitailo1, Elena A Sizova2,3, Daniil E Shoshin4

1,2,4Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

3Orenburg State University, Orenburg, Russia

1k.nechit@mail.ru, https://orcid.org/0000-0002-8755-414X

2,3sizova.L78@yandex.ru, https://orcid.org/0000-0002-5125-5981

4daniilshoshin@mail.ru, https://orcid.org/0000-0003-3086-681X

 

Abstract. As antibiotic resistance grows, alternative strategies for increasing productivity are required, free from the use of antibiotics and widely implemented in animal husbandry. In addition, the most important criterion for the use of this strategy is the absence of conflict that affects the effectiveness and safety of other additives. Ultrafine particles are a potential solution to the problem of the spread of multidrug resistance, but due to the multipurpose mechanism of action, more research is required. In this regard, the purpose of the research was to conduct a comparative assessment of the biological activity of a complex of ultrafine copper particles and an enzymatic additive using a biosensor. As a result, it was found that the combined effect of the enzyme 0.05% and 0.00078 M ultrafine copper particles stimulates the luminescence intensity of immobilized Echerichia coli K12 TG1 cells, which is probably associated with the bacterial luminescence generation system, in particular, with the action of luciferase. At the same time, the introduction of ultrafine copper particles separately, in the concentration range from 1 M to 0.1 M, showed high biological activity with complete quenching of the biosensor, indicating the death of bacterial target cells. A concentration of 0.00078 M contributed to a decrease in luminescence at the very beginning of contact, then the observed effect was leveled and inhibition at the 90th minute of contact was 20%, by the end of exposure (180 minutes) the effect was not detected. The work is part of a comprehensive study on the development of an innovative growth stimulant for broiler chickens as an effective alternative to feed antibiotics.

Keywords: bioluminescence, biological activity, ultrafine particles, copper, enzymes, amylase, xylanase, protease, biosafety, bacterial cell

Acknowledgments:  the  work  was  supported  by  the  Russian  Science  Foundation,  Project   No. 22-26-00253.

For citation: Nechitailo KS, Sizova EA, Shoshin DE. Evaluation of the biological activity of a complex of ultrafine copper particles and an enzymatic additive using bacterial test system. Animal Husbandry and Fodder Production. 2023;106(1):8-20. (In Russ.). https://doi.org/10.33284/2658-3135-106-1-8

References

 
  1. Makaeva AM. Biological expert examination of ultrafine particles of microelements that are promising for use in animal husbandry. Izvestia Orenburg State Agrarian University. 2019;2(76):236-239.
  2. Okolelova TM, Salimov TM. Topical issues of poultry feeding: monograph. Dushanbe: Sufra; 2020:272 p.
  3. Ryazantseva KV, Nechitailo KS, Sizova EA. Broiler chickens mineral nutrition rationing (review). Animal Husbandry and Fodder Production. 2021;104(1):119-137. doi: 10.33284/2658-3135-104-1-119
  4. Sizova EA, Yausheva EV, Nechitailo KS, Ivanishcheva AP. Comparative characteristics of the toxicity of ultrafine particles of copper, zinc and their alloys in the test of inhibition of bacterial bioluminescence. Animal Husbandry and Fodder Production. 2019;102(4):10-22. doi: 10.33284/2658-3135-102-4-10
  5. Shoshin DE, Sizova EA, Kamirova AM. Interaction of Co3O4 cobalt oxide ultrafine particles with oregano herb extract Origanum vulgare. Animal Husbandry and Fodder Production. 2022;105(4):35-48. doi: 10.33284/2658-3135-105-4-35
  6. Babayevska N, Przysiecka Ł, Iatsunskyi I, Nowaczyk G, Jarek M, Janiszewska E, Jurga S. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci Rep. 2022;12(1):8148. doi: 10.1038/s41598-022-12134-3
  7. Brodl E, Winkler A, Macheroux P. Molecular mechanisms of bacterial bioluminescence. Comput Struct Biotechnol J. 2018;16(1):551-564. doi: 10.1016/j.csbj.2018.11.003
  8. Dunlap P. Biochemistry and genetics of bacterial bioluminescence. In: Thouand G, Marks R, editors. Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1. Advances in Biochemical Engineering/Biotechnology. Berlin, Heidelberg: Springer. 2014;144:37-64. doi: 10.1007/978-3-662-43385-0_2
  9. Ermini ML, Voliani V. Antimicrobial Nano-Agents: The Copper Age. ACS Nano. 2021;15(4):6008-6029. doi: 10.1021/acsnano.0c10756
  10. Fass D, Thorpe C. Chemistry and enzymology of disulfide cross-linking in proteins. Chem Rev. 2018;118(3):1169-1198. doi: 10.1021/acs.chemrev.7b00123
  11. Fu Y, Chang FM, Giedroc DP. Copper transport and trafficking at the host-bacterial pathogen interface. Acc Chem Res. 2014;47(12):3605-3613. doi: 10.1021/ar500300n
  12. Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg. 2022;9:905892. doi: 10.3389/fsurg.2022.905892
  13. Muszyński S, Tomaszewska E, Kwiecień M, Dobrowolski P, Tomczyk A. Effect of dietary phytase supplementation on bone and hyaline cartilage development of broilers fed with organically complexed copper in a cu-deficient diet. Biol Trace Elem Res. 2018;182(2):339-353. doi: 10.1007/s12011-017-1092-1
  14. Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and recent trends in microbial α-Amylase: a review. Appl Biochem Biotechnol. 2021;193(8):2649-2698. doi: 10.1007/s12010-021-03546-4
  15. Pohanka M. Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl Med J. 2019;120(6):397-409. doi: 10.4149/BLL_2019_065
  16. Popov S, Saphier O, Popov M, Marina Shenker M, Entus S, Shotland Y, Saphier M. Factors enhancing the antibacterial effect of monovalent copper ions. Curr Microbiol. 2020;77(1):361-368. doi: 10.1007/s00284-019-01794-6
  17. Rensing C, Moodley A, Cavaco LM, McDevitt SF. Resistance to metals used in agricultural production. Microbiol Spectr. 2018;6(2). doi: 10.1128/microbiolspec.ARBA-0025-2017
  18. Salah I, Parkin IP, Allan E. Copper as an antimicrobial agent: recent advances. RSC Adv. 2021;11(30):18179-18186. doi: 10.1039/d1ra02149d
  19. Saphier M, Moshkovich L, Popov S, Shotland Y, Silberstein E, Saphier O. Monovalent copper ions inhibit enzymatic systems. Research Square. [Preprint] 2021. doi: 10.21203/rs.3.rs-1153129/v1
  20. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):65. doi: 10.1186/s12951-017-0308-z
  21. Sperandeo P, Martorana AM, Polissi A. Lipopolysaccharide biosynthesis and transport to the outer membrane of gram-negative bacteria. In: Kuhn A, editor. Bacterial Cell Walls and Membranes. Subcellular Biochemistry. Cham: Springer. 2019;92:9-37. doi: 10.1007/978-3-030-18768-2_2
  22. Tinikul R, Chunthaboon P, Phonbuppha J, Paladkong T. Bacterial luciferase: Molecular mechanisms and applications. The Enzymes. 2020;47:427-455. doi: 10.1016/bs.enz.2020.06.001
  23. Tinikul R, Lawan N, Akeratchatapan N, Pimviriyakul P, Chinantuya W, Suadee C, Sucharitakul J, Chenprakhon P, Ballou DP, Entsch B, Chaiyen P. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase. FEBS J. 2021;288(10):3246-3260. doi: 10.1111/febs.15653
  24. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941-3965. doi: 10.2147/IJN.S134526
  25. Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of copper nanoparticles in dentistry. Nanomaterials (Basel). 2022;12(5):805. doi: 10.3390/nano12050805
  26. Zuily L, Lahrach N, Fassler R, Genest O, Faller P, Sénèque O, Denis Y, Castanié-Cornet MP, Genevaux P, Jakob U, Reichmann D, Giudici-Orticoni MT, Ilbert M. Copper induces protein aggregation, a toxic process compensated by molecular chaperones. mBio. 2022;13(2):e0325121. doi: 10.1128/mbio.03251-21
 

Information about the authors:

Ksenia S Nechitailo, Researcher at the Centre for Nanotechnologies in Agriculture, Federal Research Centre for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-905-893-55-99.

Elena A Sizova, Dr. Sci. (Biology), Head of the Centre "Nanotechnologies in Agriculture", Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000; Professor of the Department of Biology and Soil Science, Orenburg State University, 13 Prospect Pobedy, Orenburg, 460018 Russia, tel.: 8-912-344-99-07.

Daniil E Shoshin, Master, Laboratory Researcher of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-965-932-53-67.

 

The article was submitted 16.02.2023; approved after reviewing 22.02.2023; accepted for publication 20.03.2023.

Download