Svetlana V Notova, Olga V Marshinskaya, Tatyana V Kazakova

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 1. Р. 183-191.

 

doi:10.33284/2658-3135-106-1-183

 

Review article

The role of trace elements in the antioxidant defense system of organism

 

Svetlana V Notova1, Olga V Marshinskaya2, Tatyana V Kazakova3

1,2,3Orenburg State University, Institute of Bioelementology, Orenburg, Russia

1snotova@mail.ru, https://orcid.org/0000-0002-6378-4522

2m.olja2013@yandex.ru, https://orcid.org/0000-0002-5611-5128

3vaisvais13@mail.ru, https://orcid.org/0000-0003-3717-4533

 

 Abstract. The balance between free radicals and antioxidants is a fundamental link for the proper physiological functioning of organism. However, the antioxidant defense system is disrupted when living conditions are violated, which leads to an excessive increase in production of reactive oxygen species and free radical oxidation processes. The constancy of the chemical composition is important for the normal functioning of the antioxidant system. Despite their low content, trace elements are essential for the normal functioning of the body due to their diverse biological role. The homeostasis in a number of trace elements underlies between the dynamic of oxidative stress and antioxidants interaction in many pathophysiological processes. Both deficiency and excess of trace elements can affect the redox balance. Current review provides brief information about the nature, types and sources of free radicals, as well as the role of selenium, zinc, copper and iron in the antioxidant defense system.

Keywords: oxidative stress, reactive oxygen species, antioxidants, selenium, zinc, copper, iron

Acknowledgments: the  work  was  supported  by  the  Russian  Science   Foundation, Project No. 22-25-00600.

For citation: Notova SV, Marshinskaya OV, Kazakova TV. The role of trace elements in the antioxidant defense system of organism (review). Animal Husbandry and Fodder Production. 2023;106(1):183-191. (In Russ.). https://doi.org/10.33284/2658-3135-106-1-183

 

References

 
  1. Adeniran SO, Zheng P, Feng R, Adegoke EO, Huang F, Ma M, Wang Z, Ifarajimi OO, Li X, Zhang G. The antioxidant role of selenium via GPx1 and GPx4 in LPS-induced oxidative stress in bovine endometrial cells. Biol Trace Elem Res. 2022;200(3):1140-1155. doi: 10.1007/s12011-021-02731-0
  2. Agidigbi TS, Kim C. Reactive oxygen  species  in  osteoclast  differentiation  and  possible pharmaceutical  targets  of  ROS-mediated  osteoclast diseases. Int J Mol Sci. 2019;20(14):3576.            doi: 10.3390/ijms20143576
  3. Angelova PR, Abramov A.Y. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 2018;592(5):692-702. doi: 10.1002/1873-3468.12964
  4. Annesley SJ, Fisher PR. Mitochondria in health and disease. Cells. 2019;8(7):680. doi: 10.3390/cells8070680
  5. Bakhautdin B, Bakhautdin EG, Fox PL. Ceruloplasmin has two nearly identical sites that bind myeloperoxidase. Biochem Biophys Res Commun. 2014;453(4):722-727. doi: 10.1016/j.bbrc.2014.09.134
  6. Bhattacharjee A, Chakraborty K, Shukla A. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases. Metallomics. 2017;9(10):1376-1388. doi: 10.1039/c7mt00066a
  7. Calvo J, Jung H, Meloni G. Copper metallothioneins.  IUBMB  Life.  2017;69(4):236-245. doi: 10.1002/iub.1618
  8. Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15-25. doi: 10.1016/j.fct.2012.09.021
  9. Cecerska-Heryć E, Surowska O, Heryć R, Serwin N, Napiontek-Balińska S, Dołęgowska B. Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients - A review. Clin Biochem. 2021;93:1-8. doi: 10.1016/j.clinbiochem.2021.03.008
  10. Chen Y, Yang J, Wang Y, Yang M, Guo M. Zinc deficiency promotes testicular cell apoptosis in mice. Biol Trace Elem Res. 2020;195(1):142-149. doi: 10.1007/s12011-019-01821-4
  11. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bulletin of Experimental Biology and Medicine. 2021;171(2):179-189. doi: 10.1007/s10517-021-05191-7
  12. Devi SRB, Dhivya A.M., Sulochana KN. Copper transporters and chaperones: Their function on angiogenesis and cellular signaling. J Biosci. 2016;41(3):487-496. doi: 10.1007/s12038-016-9629-6
  13. Dlouhy AC, Outten CE. The iron metallome in eukaryotic organisms. In: Banci L, editor. Metallomics and the Cell. Dordrecht: Springer. 2013;12:241-178. doi: 10.1007/978-94-007-5561-1_8
  14. Ergaz Z, Weinstein-Fudim L, Ornoy A. High sucrose low copper diet in pregnant diabetic rats induces transient oxidative stress, hypoxia, and apoptosis in the offspring's liver. Birth Defects Res. 2018;110(12):1001-1015. doi: 10.1002/bdr2.1341
  15. Falcone E, Ritacca AG, Hager S, Schueffl H, Vileno B, Khoury YE, Hellwig P, Kowol CR, Heffeter P, Sicilia E, Faller P. Copper-catalyzed glutathione oxidation is accelerated by the anticancer thiosemicarbazone Dp44mT and further boosted at lower pH. J Am Chem Soc. 2022;144(32):14758-14768. doi: 10.1021/jacs.2c05355
  16. Fan RF, Liu JX, Yan YX, Wang L, Wang ZY. Selenium relieves oxidative stress, inflammation, and apoptosis within spleen of chicken exposed to mercuric chloride. Poult Sci. 2020;99(11):5430-5439. doi: 10.1016/j.psj.2020.08.031
  17. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713-735. doi: 10.1161/CIRCRESAHA.116.309326
  18. Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res. 2019;1866(12):118535. doi: 10.1016/j.bbamcr.2019.118535
  19. Giménez VMM, Bergam I, Reiter RJ, Manucha W. Metal ion homeostasis with emphasis on zinc and copper: Potential crucial link to explain the non-classical antioxidative properties of vitamin D and melatonin. Life Sci. 2021;281:119770. doi: 10.1016/j.lfs.2021.119770
  20. Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, selenoproteins and viral infection. Nutrients. 2019;11(9):2101. doi: 10.3390/nu11092101
  21. Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667-695. doi: 10.1007/s10787-020-00690-x
  22. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem. 2017;44(2):532-553. doi: 10.1159/000485089
  23. Hübner C, Haase H. Interactions of zinc- and redox-signaling pathways. Redox Biol. 2021;41:101916. doi: 10.1016/j.redox.2021.101916
  24. Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017;9(7):671. doi: 10.3390/nu9070671
  25. Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J, Janda K. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski. 2020;48(284):124-127.
  26. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11-24. doi: 10.1007/s10787-017-0309-4
  27. Kietzmann T. Cellular Redox Compartments. Antioxid Redox Signal. 2019;30(1):1-4. doi: 10.1089/ars.2018.7661
  28. Knaus UG. Oxidants in Physiological Processes. In: Schmidt Harald HHW, Ghezzi P, Cuadrado A, editors. Reactive Oxygen Species. Network Pharmacology and Therapeutic Applications. Springer Cham;2021:27-47. doi: 10.1007/164_2020_380
  29. Krężel A, Maret W. The Functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci. 2017;18(6):1237. doi: 10.3390/ijms18061237
  30. Lee SR. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev. 2018;2018:9156285. doi: 10.1155/2018/9156285
  31. Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81(18):3691-3707. doi: 10.1016/j.molcel.2021.08.018
  32. Lewandowski L, Kepinska M, Milnerowicz H. The copper-zinc superoxide dismutase activity in selected diseases. Eur J Clin Invest. 2019;49(1):e13036. doi: 10.1111/eci.13036
  33. Li J, Zhang W, Zhou P, Tong X, Guo D, Lin H. Selenium deficiency induced apoptosis via mitochondrial pathway caused by Oxidative Stress in porcine gastric tissues. Res Vet Sci. 2022;144:142-148. doi: 10.1016/j.rvsc.2021.10.017
  34. Li R, Jia Z, Trush MA. Defining ROS in biology and medicine. React Oxyg Species (Apex). 2016;1(1):9-21. doi: 10.20455/ros.2016.803
  35. Li S, Zhao Q, Zhang K, Sun W, Li J, Guo X, Yin J, Zhang J, Tang C. Selenium deficiency-induced pancreatic pathology is associated with oxidative stress and energy metabolism disequilibrium. Biol Trace Elem Res. 2021;199(1):154-165. doi: 10.1007/s12011-020-02140-9
  36. Li Z, Zhao Q, Lu Y, Zhang Y, Li L, Li M, Chen X, Sun D, Duan Y, Xu Y. DDIT4 S-Nitrosylation Aids p38-MAPK signaling complex assembly to promote hepatic reactive oxygen species production. Adv Sci (Weinh). 2021;8(18):e2101957. doi: 10.1002/advs.202101957
  37. Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics. 2016;8(9):887-905. doi: 10.1039/c6mt00103c
  38. Liu H, Guo H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Copper induces oxidative stress and apoptosis in the mouse liver. Oxid Med Cell Longev. 2020 ;2020:1359164. doi: 10.1155/2020/1359164
  39. Liu Z, Wang M, Zhang C, Zhou S, Ji G. Molecular functions of ceruloplasmin in metabolic disease pathology. Diabetes Metab Syndr Obes. 2022;15:695-711. doi: 10.2147/DMSO.S346648
  40. Lu S, Wang XZ, He C, Wang L, Liang SP, Wang CC, Li C, Luo TF, Feng CS, Wang ZC, Chi GF, Ge PF. ATF3 contributes to brucine-triggered glioma cell ferroptosis via promotion of hydrogen peroxide and iron. Acta Pharmacol Sin. 2021;42(10):1690-1702. doi: 10.1038/s41401-021-00700-w
  41. Mahaseth T, Kuzminov A. Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat Res Rev Mutat Res. 2017;773:274-281. doi: 10.1016/j.mrrev.2016.08.006
  42. Mangiapane E, Pessione A, Pessione E. Selenium and selenoproteins: an overview on different biological systems. Curr Protein Pept Sci. 2014;15(6):598-607. doi: 10.2174/1389203715666140608151134
  43. Meo SD, Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longev. 2020;2020:9829176. doi: 10.1155/2020/9829176
  44. Min X, Yang Q, Zhou P. Effects of nano-copper oxide on antioxidant function of copper-deficient kazakh sheep. Biol Trace Elem Res. 2022;200(8):3630-3637. doi: 10.1007/s12011-021-02975-w
  45. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci. 2018;63(1):68-78. doi: 10.1016/j.advms.2017.05.005
  46. Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103-115. doi: 10.1038/cr.2010.178
  47. Niki E. Antioxidants: basic principles, emerging concepts, and problems. Biomed J. 2014;37(3):106-111. doi: 10.4103/2319-4170.128727
  48. Ogboo BC, Grabovyy UV, Maini A, Scouten S, van der Vliet A, Mattevi A, Heppner DE. Architecture of the NADPH oxidase family of enzymes. Redox Biol. 2022;52:102298. doi: 10.1016/j.redox.2022.102298
  49. Opara EC, Rockway SW. Antioxidants and micronutrients. Dis Mon. 2006;52(4):151-63. doi: 10.1016/j.disamonth.2006.05.002
  50. Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, Palanimuthu D, Lok HC, Kovačević Z, Huang MLH, Kalinowski DS, Richardson DR. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics. 2016;8(9):874-886. doi: 10.1039/c6mt00105j
  51. Saito Y. Lipid peroxidation products as a mediator of toxicity and adaptive response – The regulatory role of selenoprotein and vitamin E. Arch Biochem Biophys. 2021;703:108840. doi: 10.1016/j.abb.2021.108840
  52. Santesmasses D, Mariotti M, Gladyshev VN. Bioinformatics of selenoproteins. Antioxid Redox Signal. 2020;33(7): 525-536. doi: 10.1089/ars.2020.8044
  53. Schwarz M, Lossow K, Schirl K, Hackler J, Renko K, Kopp JF, Schwerdtle T, Schomburg L, Kippa AP. Copper interferes with selenoprotein synthesis and activity. Redox Biol. 2020;37:101746. doi: 10.1016/j.redox.2020.101746
  54. Sharma GN, Gupta G, Sharma P. A comprehensive review of free radicals, antioxidants, and their relationship with human ailments. Crit Rev Eukaryot Gene Expr. 2018;28(2):139-154. doi: 10.1615/CritRevEukaryotGeneExpr.2018022258
  55. Sies H, Berndt C, Jones DP. Oxidative stress. Annual Review of Biochemistry. 2017;86:715-748. doi: 10.1146/annurev-biochem-061516-045037
  56. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-183. doi: 10.1016/j.redox.2015.01.002
  57. Staveness D, Bosque I, Stephenson CR. Free radical chemistry enabled by visible light-induced electron transfer. Accounts of Chemical Research. 2016;49(10):2295-2306. doi: 10.1021/acs.accounts.6b00270
  58. Sun L, Wang X, Saredy J, Yuan Z, Yang X, Wang H. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol. 2020;37:101759. doi: 10.1016/j.redox.2020.101759
  59. Vignesh KS, Deepe GS. Metallothioneins: emerging modulators in immunity and infection. Int J Mol Sci. 2017;18(10):2197. doi: 10.3390/ijms18102197
  60. Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y. Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxid Med Cell Longev. 2017;2017:7478523. doi: 10.1155/2017/7478523
  61. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9(12):1286. doi: 10.3390/nu9121286
  62. Wu T, Song M, Shen X. Seasonal dynamics of copper deficiency in wumeng semi-fine wool sheep. Biol Trace Elem Res. 2020;197(2):487-494. doi: 10.1007/s12011-019-02018-5
  63. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-379. doi: 10.1038/cdd.2015.158
  64. Xu Y, Li A, Li X, Deng X, Gao XJ. Zinc deficiency induces inflammation and apoptosis via oxidative stress in the kidneys of mice. Biol Trace Elem Res. 2023;201(2):739-750. doi: 10.1007/s12011-022-03166-x
  65. Yang F, Pei R, Zhang Z, Liao J, Yu W, Qiao N, Han Q, Li Y, Hu L, Guo J, Pan J, Tang Z. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicology in Vitro. 2019;54:310-316. doi: 10.1016/j.tiv.2018.10.017
  66. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020; 2020:8609213. doi: 10.1155/2020/8609213
  67. Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 2019;26:101284. doi: 10.1016/j.redox.2019.101284
   

Information about the authors:

Svetlana V Notova, Dr. Sci. (Medicine), Professor, Professor of the Department of Biochemistry and Microbiology, Chief Researcher of the Institute of Bioelementology, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: +7 (3532) 37-24-82

Olga V Marshinskaya, Junior Researcher, Institute of Bioelementology, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: +7 (3532) 37-24-82

Tatyana V Kazakova, Junior Researcher, Institute of Bioelementology, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: +7 (3532) 37-24-82

 

The article was submitted 27.02.2023; approved after reviewing 16.03.2023; accepted for publication 20.03.2023.

Download