Elena A Agafonova, Elena V Sheida, Olga V Kvan

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 1. Р. 132-143.

 

doi:10.33284/2658-3135-106-1-132

 

Review article

Enzyme use in cattle nutrition, implications for health and productivity

 

Elena A Agafonova1, Elena V Sheida2, Olga V Kvan3

1,2,3Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1alenaagafonov4@yandex.ru

2elena-snejjda@mail.ru, https://orcid.org/0000-0002-2586-613X

3kwan111@yandex.ru, https://orcid.org/0000-0003-0561-7002

 

Abstract. The use of exogenous enzymes in cattle diets positively affects the digestibility of fiber and increases the efficiency of feed use by ruminants. Enzymes used in animal feed are considered to be zootechnical additives that improve the consistency and nutritional value of feed, increase digestibility and productivity of animals. The review presents and discusses the use of exogenous enzymes that contribute to an increase in the digestibility of fiber and increasing the productivity of cattle. Using the appropriate methods and methods of feeding, you can significantly increase the digestibility of fiber and improve the consistency and taste of feed. Especially when adding to moist feed, since high moisture content favorably affects fibolytic enzymes that require water for hydrolysis of complex fibrous polymers with the release of simple monomers. The method of action of each enzyme is individual and interdependent, its use in combination with feed composition should be carried out rationally and carefully to achieve the maximum positive effect.

Keywords: cattle, feeding, enzymes, feed composition, productivity

Acknowledgements: the work was performed in accordance to the plan of research works for 2021-2023 FSBRI FRC BST RAS (No. 0761-2019-0005).

For citation: Agafonova EA, Sheida EV, Kvan OV. Enzyme use in cattle nutrition, implications for health and productivity (review). Animal Husbandry and Fodder Production. 2023;106(1):132-143. (In Russ.). https://doi.org/10.33284/2658-3135-106-1-132

 

References

 
  1. Abdelrahman M, Sami A, Suliman GM, Gamaleldin S, Abudabos A. Growth performance and economic efficiency of fattening Naimi lambs on unconventional ration enhanced with enzyme cocktail. Pakistan Journal of Agricultural Sciences. 2016;53(2):467-471. doi: 10.21162/PAKJAS/16.4536
  2. Abid K, Jabri J, Beckers Y, Yaich H, Malek A, Rekhis J, Kamoun M. Study on effect of fibrolytic enzymes supplementation on in vitro gas production kinetics and ruminal fermentation of date palm (Phoenix dactylifera) by-products. Research Aspects in Agriculture and Veterinary Science. 2021;3:74-88. doi: 10.9734/bpi/raavs/v3/12608D
  3. Ahmed K. Effect of fibrolytic enzymes on serum testosterone level and some of carcass traits in Turkish Awassi male lambs. Indian Journal of Animal Research. 2016;50(6):919-921. doi: 10.18805/ijar.11475
  4. Ali U, Saeed M, Ahmad Z, Shah F, Rehman MA, Mehmood T, Waseem M, Hafeez H, Azam M, Rahman A. Stability and survivability of alginate gum-coated lactobacillus rhamnosus GG in simulated gastrointestinal conditions and probiotic juice development. Journal of Food Quality. 2023;2023:3660968. doi: 10.1155/2023/3660968
  5. Arriola KG, Oliveira AS, Ma ZX, Lean IJ, Giurcanu MC, Adesogan AT. A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. Journal of Dairy Science. 2017;100:4513-4527. doi: 10.3168/jds.2016-12103
  6. Azzaz HH, Tawab AMAE, Khattab MSA, Szumacher-Strabel M, Cieslak A, Murad HA, Kielbowicz M, El-Sherbiny M. Effect of cellulase enzyme produced from penicilliumchrysogenum on the milk production, composition, amino acid, and fatty acid profiles of egyptian buffaloes fed a high-forage diet. Animals. 2021;11(11):3066. doi: 10.3390/ani11113066
  7. Bedford MR. The evolution and application of enzymes in the animal feed industry: the role of data interpretation. British Poultry Science. 2018;59(5):486-493. doi: 10.1080/00071668.2018.1484074
  8. Betancur-Murillo CL, Aguilar-Marin SB, Jovel J. Prevotella: A key player in ruminal metabolism. Microorganisms. 2023;11(1):1. doi: 10.3390/microorganisms11010001
  9. Campana M, Morais JPG, Capucho E, Garcia TM, Pedrini CA, Gandra JR, Valle TAD. Fibrolytic enzymes increase fermentation losses and reduce fiber content of sorghum silage. Annals of animal science. 2023;2023(1): 165-172. doi: 10.2478/aoas-2022-0038
  10. Carrillo-Diaz MI, Miranda-Romero LA, Chavez-Aguilar G, Zepeda-Batista JL, Gonzalez-Reyes M, Garcia-Casillas AC, Tirado-Gonzalez DN, Tirado-Estrada G. Improvement of ruminal neutral detergent fiber degradability by obtaining and using exogenous fibrolytic enzymes from whiterot fungi. Animals. 2022;12(7):843. doi: 10.3390/ani12070843
  11. Cowieson A. Strategic selection of exogenous enzymes for corn/soy-based poultry diets. Journal of Poultry Science. 2010;47(1):1-7. doi: 10.2141/JPSA.009045
  12. Devant M, Yu S, Genis S, Larsen T, Li W. Effects of exogenous glucoamylase enzymes alone or in combination with a neutral protease on apparent total tract digestibility and feces d-lactate in crossbred angus bulls fed a ration rich in rolled corn. Animals. 2020;10(6):1077. doi: 10.3390/ani10061077
  13. Edison KL, Ragitha VS, Pradeep NS. Beta-glucanases in animal nutrition. In: Pradeep N, Edison LK, editors. Microbial Beta Glucanases. Interdisciplinary biotechnological advances. Springer, Singapore; 2022:73-83. doi: 10.1007/978-981-19-6466-4_5
  14. El-Bordeny N, El-Sayed HM, Hemmat ST, Mahran. Evaluation of exogenous fibrolytic enzyme supplementation to improve feed utilization in ruminants. Journal of Environmental Science. 2017;39(1):69-90. doi: 10.21608/jes.2017.19858
  15. Ellatif SA, Razik ESA, AL-surhanee AA, Al-Sarraj F, Daigham GE, Mahfouz AY. Enhanced production, cloning, and expression of a xylanase gene from endophytic fungal strain Trichoderma harzianum kj831197.1: unveiling the in vitro anti-fungal activity against phytopathogenic fungi. J Fungi. 2022;8(5):447 doi: 10.3390/jof8050447
  16. Estrada-Reyes Z, Tsukahara Y, Goetsch A, Gipson T, Sahlu T, Puchala R, Mateescu R. Genetic markers for resistance to gastrointestinal parasites in sheep and goats from the southern region of the united states. 01/2022. doi: 10.32473/edis-an383-2022
  17. Golder HM, Rossow HA, Lean IJ. Effects of in-feed enzymes on milk production and components, reproduction, and health in dairy cows. J Dairy Sci. 2019;102(9):8011-8026. doi: 10.3168/jds.2019-16601
  18. Henry DD, Ciriaco FM, Araujo RC, Fontes PL, Oosthuizen N, Mejia-Turcioc SE, Garcia-Ascolani ME, Rostoll-Cangiano L, Schulmeister TM, Dubeux JCB, Lamb GC, Dilorenzo N. Effects of bismuth subsalicylate and encapsulated calcium-ammonium nitrate on ruminal fermentation of beef cattle. Journal of Animal Science. 2020;98(8):skaa199. doi: 10.1093/jas/skaa199
  19. Huang Z, Li Z, Xu A, Zheng D, Ye Y, Wang Z. Effects of exogenous multienzyme complex supplementation in diets on growth performance, digestive enzyme activity and non‐specific immunity of the Japanese seabass, Lateolabrax japonicus. Aquaculture Nutrition. 2020;26(2):306-315. doi: 10.1111/anu.12991
  20. Ibarra-Islas A, Hernandez JEM, Armenta S, Lopez JE, Lopez PMG, Leon SH, Arce-Cervantes O. Use of nutshells wastes in the production of lignocellulolytic enzymes by white-rot fungi. Brazilian Archives of Biology and Technology. 2023;66:e23210654 . doi: 10.1590/1678-4324-2023210654
  21. Islam R, Rahman M, Islam S, Ahmed S, Jahan M, Paul SI, Selim ASM. Degradation of lignocellulosic content of rice straw using aerobic cellulolytic bacteria isolated from forest soil of Bangladesh. African Journal of Microbiology Research. 2021;15(3):161-170. doi: 10.5897/AJMR2021.9498
  22. Jabri J, Ammar H, Abid K, Beckers Y, Yaich H, Malek A, Rekhis J, Morsy A, Soltan Y, Soufan W, Almadani M, Chahine M, Marti MH, Okla M, Kamoun M. Effect of exogenous fibrolytic enzymes supplementation or functional feed additives on in vitro ruminal fermentation of chemically pre-treated sunflower heads. Agriculture. 2022;12(5):696. doi: 10.3390/agriculture12050696
  23. Kaur A, Singh A, Dua A, Mahajan R. Cost-effective and concurrent production of industrially valuable xylano-pectinolytic enzymes by a bacterial isolate Bacillus pumilus AJK. Preparative Biochemistry & Biotechnology. 2017;47(1):8-18. doi: 10.1080/10826068.2016.1155059
  24. Liu ZK, Y Li, Zhao CC, Liu ZJ, Wang LM, Li XY, Pellikaan WF, Yao JH, Cao YC. Effects of a combination of fibrolytic and amylolytic enzymes on ruminal enzyme activities, bacterial diversity, blood profile and milk production in dairy cows. Animal. 2022;16(8):100595. doi: 10.1016/j.animal.2022.100595
  25. Lopez-Aguirre D, Hernandez-Melendez J, Rojo R, Sanchez-Davila F, Lopez-Villalobos N, Salem AFZM, Martinez-Gonzalez JC, Vazquez-Armijo JF, Ruiz S. Effects of exogenous enzymes and application method on nutrient intake, digestibility and growth performance of Pelibuey lambs. Springer Plus. 2016;5:1399. doi: 10.1186/s40064-016-3075-7
  26. Lucio BSV, Hernаndez-Dominguez E, Villa-Garcia M, Diaz-Godinez G, Mandujano-Gonzalez V, Mendoza-Mendoza B, Alvarez Cervantes J. Exogenous enzymes as zootechnical additives in animal feed: a review. Catalysts. 2021;11(7):851. doi: 10.3390/catal11070851
  27. Lunsin R, Pilajun, R, Cherdthong A, Wanapat M, Duanyai S, Sombatsri P. Influence of fibrolytic enzymes in total mixed ration containing urea-molasses-treated sugarcane bagasse on the performance of lactating Holstein–Friesian crossbred cows. Animal Science Journal. 2021;92(1):e13652. doi: 10.1111/asj.13652
  28. Manju GU, Sreesujatha RM, Naveen Kumar S, Giridhar KS, Suma, Ananth Krishna LR. Effect of supplementation of cellulolytic enzymes on the performance of growing mandya lambs fed with urea treated farm sugarcane bagasse. International Journal of Current Microbiology And Applied Sciences. 2019;8(11):502-509. doi: 10.20546/ijcmas.2019.811.061
  29. Marimuthu M, Sorimuthu A, Sankareswaran M. Production and optimization of xylanase enzyme from bacillus subtilis using agricultural wastes by solid state fermentation. International Journal of Pharmaceutical Investigation. 2019;9(4):169-173. doi: 10.5530/ijpi.2019.4.32
  30. Mendoza GD, Loera-Corral O, Plata-Perez FX, Hernandez-Garcia PA, Ramirez-Mella M. Considerations on the use of exogenous fibrolytic enzymes to improve forage utilization. Scientific World Journal. 2014; 2014:247437. doi: 10.1155/2014/247437
  31. Mousa GA, Allak MA, Hassan OGA. Influence of fibrolytic enzymes supplementation on lactation performance of ossimi ewes. Advances in Animal and Veterinary Sciences. 2022;10(1):27-34. doi: 10.17582/journal.aavs/2022/10.1.27.34
  32. Neumann M, Leao GFM, Horst EH, Stuani OF, Sangali CP, Castilho R. Exogenous enzymes improve performance and carcass traits of feedlot cattle fed high-grain diet. Revista brasileira de zootecnia. 2018а;47:e20170308 . doi: 10.1590/rbz4720170308
  33. Neumann M, Leao GFM, Vigne GLD, Santos LC, Venancio BJ, Dochwat, A. Xylanase - complex efficacy in high-energy diet for bulls finished in feedlot. Acta Scientiarum Animal Sciences. 2018b;40:e37321. doi: 10.4025/actascianimsci.v40i1.37321
  34. Ojha BK, Singh PK, Shrivastava N. Chapter 7 - Enzymes in the Animal Feed Industry. In: Kuddus M, editor. Enzymes in Food Biotechnology. USA, MA, Cambridge: Academic Press; 2019:93-109. doi: 10.1016/B978-0-12-813280-7.00007-4
  35. Ran T, Saleem AM, Shen Y, Ribeiro GO, Beauchemin KA, Tsang A, Yang W, McAllister TA. Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet1. J Anim Sci. 2019;97(8):3578-3587. doi: 10.1093/jas/skz216
  36. Rathinam NK, Samanta D, Kumar A, Sani R. Bioprospecting of thermostable cellulolytic enzymes through modeling and virtual screening method. Canadian Journal of Biotechnology. 2017;1(1):19-25. doi: 10.24870/cjb.2017-000105
  37. Refat B, Christensen DA, Ismael A, Feng X, Rodriguez-Espinosa M, Guevara-Oquendo VH, Yang J, Alzahal O, Yu P. Evaluating the effects of fibrolytic enzymes on rumen fermentation, omasal nutrient flow and production performance in dairy cows during early lactation. Canadian Journal of Animal science. 2022;102(1):39-49. doi: 10.1139/cjas-2020-0062
  38. Refat B, Christensen DA, McKinnon JJ, Yang W, Beattie AD, McAllister TA, Eun JS, Abdel-Rahman GA, Yu P. Effect of fibrolytic enzymes on lactational performance, feeding behavior, and digestibility in high-producing dairy cows fed a barley silage–based diet. Journal of Dairy Science. 2018;101(9):7971-7979. doi: 10.3168/jds.2017-14203
  39. Rodrigues GRD, Siqueira MTS, Dutra TO, Schultz EB, Sousa LF, Macedo GL. Uso de enzima amilolitica associada a enzimas proteoliticas e fibroliticas na dieta para ovinos. Revista Agraria Academica. 2022;5(3):59-72. doi: 10.32406/v5n3/2022/59-72/agrariacad
  40. Shakya J, Balhara AK, Dahiya SS, Lailer PC, Singh I. Improved dairy production through enzyme supplementation. The Indian Journal of Animal Sciences. 2019;89(10):1045-1061. doi: 10.56093/ijans.v89i10.94995
  41. Shekhar C, Thakur SS, Shelke SK. Effect of exogenous fibrolytic enzymes supplementation on milk production and nutrient utilization in Murrah buffaloes. Trop Anim Health Prod. 2010;42:1465-1470. doi: 10.1007/s11250-010-9578-2
  42. Silva DL, Dalolio FS, Teixeira LV, Sens Rafael, Albino LFT, Rostagno Horacio. Impact of the supplementation of exogenous protease and carbohydrase on the metabolizable energy and standardized ileal amino acid digestibility of soybean meals in two Brazilian regions. Brazilian Journal of Poultry Science. 2022;24(04):001-010. doi: 10.1590/1806-9061-2021-1452
  43. Singh A, Anil, Nair PM, Yadav S, Jamadar P, Tiwari J, Durge A. A review on the role of exogenous fibrolytic enzymes in ruminant nutrition. Current Journal of Applied Science and Technology. 2022;41(36):45-58. doi: 10.9734/CJAST/2022/v41i363966
  44. Soltan Y, Patra A. Ruminal microbiome manipulation to improve fermentation efficiency in ruminants. In: Patra AK, editor. Animal Feed Science and Nutrition.  Production, Health and Environment [Internet]. 2022. Available from: http://dx.doi.org/10.5772/intechopen.101582
  45. Sujani S, Seresinhe RT. Exogenous enzymes in ruminant nutrition: A review. Asian Journal of Animal Sciences. 2015;9(3):85-99. doi: 10.3923/ajas.2015.85.99
  46. Tirado-Gonzalez DN, Miranda-Romero LA, Ruiz-Flores A, Medina-Cuellar S, Ramirez-Valverde R, Tirado-Estrada G. Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. Journal of Applied Animal Research. 2018;46(1):771-783. doi: 10.1080/09712119.2017.1399135
  47. Trejo LT, Zepeda BA, Franco FJ, Soto SS, Ojeda RD, Ayala MM. Uso de extracto enzimatico de Pleurotus ostreatus sobre los parametros productivos de cabras. Abanico Vet. 2017;7(2):14-21. doi: 10.21929/abavet2017.72.1
  48. Ugwuanyi JO. Chapter 10 - Enzymes for nutritional enrichment of agro-residues as livestock feed. In: Gurpreet SD, Surinder K, editors. Agro-Industrial Wastes as Feedstock for Enzyme Production. USA, MA, Cambridge: Academic Press; 2016:233-260. doi: 10.1016/B978-0-12-802392-1.00010-1
  49. Yang JC, Guevara-Oquendo VH, Refat B, Yu P. Effects of exogenous fibrolytic enzyme derived from trichoderma reesei on rumen degradation characteristics and degradability of low-tannin whole plant faba bean silage in dairy cow. Dairy. 2022;3(2):303-313. doi: 10.3390/dairy3020023
  50. Zayed MS, Szumacher-Strabel M, El-Fattah DAA, Madkour MA, Gogulski M, Strompfova V, Cieslak A, El-Bordeny N. Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage. The Journal of Agricultural Science. 2020;158(4):326-338. doi: 10.1017/S0021859620000611
  51. Zeuner B, Thomsen TB, Stringer MA, Krogh KBRM, Meyer AS, Holck J. Comparative characterization of Aspergillus pectin lyases by discriminative substrate degradation profiling. Frontiers in Bioengineering and Biotechnology. 2020;8:873. doi: 10.3389/fbioe.2020.00873
 

Information about the authors:

Elena A Agafonova, master student of the Department of Feeding Farm Animals and Feed Technology named after S.G. Leushin, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., 460000, Orenburg, tel.: 89619105051.

Elena V Sheida, Cand Sci. (Biology), Researcher at the Laboratory of Biological Testing and Expertise, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., 460000, Orenburg, tel.: 89228626402.

Olga V Kvan, Cand Sci. (Biology), Acting Head of the Department of Feeding farm Animals and Feed Technology named after S.G. Leushin, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., 460000, Orenburg, phone: 89225485657.

 

The article was submitted 08.02.2023; approved after reviewing 21.02.2023; accepted for publication 20.03.2023.

Download