Marina S Zueva, Elena P Miroshnikova, Azamat Е Arinzhanov, Yulia V Kilyakova

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 2. Р. 8-20.

 

doi:10.33284/2658-3135-106-2-8

 

Original article

The effect of probiotics on the elemental composition of muscle tissue in carp

 

Marina S Zueva1,2, Elena P Miroshnikova3, Azamat Е Arinzhanov4, Yulia V Kilyakova5

1Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

2,3,4,5Orenburg State University, Orenburg, Russia

1,2zueva@ms-98.ru, https://orcid.org/0000-0002-2818-1312

3elenaakva@rambler.ru, https://orcid.org/0000-0003-3804-5151

4arin.azamat@mail.ru, https://orcid.org/0000-0001-6534-7118

5fish-ka06@mail.ru, https://orcid.org/0000-0002-2385-264

 

Abstract. The study of the elemental status of fish is due to the anthropogenic impact on the hydrobionts body and the subsequent accumulation of dangerous concentrations of toxic elements. The use of probiotic drugs is aimed at reducing the accumulation of a number of macro- and microelements in the body, including the muscles of fish. The purpose of the research was to study the effect of probiotic drugs on the concentration of chemical elements in muscle tissue of carp. The paper presents the results of the effect of Atysh (Enterococcus faecium (2 x 109 CFU) and Lactobacillus acidophilus (1 x 107 CFU)) and Subtilis (Bacillus subtilis (2×109 CFU) and Bacillus licheniformis (2×109 CFU)) probiotic preparations on the elemental status of carp. In the course of research, it was found that the inclusion of the Atysh probiotic in the diet of carp contributed to an increase in Ca on 43.39% (P£0.05) and Sr on 86.40 % (P£0,05) while reducing the level of some trace elements: Co on 83.33% (P£0.01), Li on 80.00 % (P£0.05), Ni on 72.43% (P£0.01), Fe on 58.21% (P£0.01), Cu on 56.52% (P£0.01), Zn on 45.15% (P£0.05), I on 41.05% (P£0.05), Cr on 31.50% (P£0.05), Cd on 90.00% (P£0.05), Al on 83.84% (P£0.01), Pb on 83.33% (P£0.01) and Sn on 83.33% (P£0.01). Use of Subtilis probiotic in feeding was noted by a decrease in the level of trace elements: Li on 92.30% (P£0.05), Co on 86.67% (P£0.01), and Ni on 81.08% (P£0.01), Fe on 59.34% (P£0.01), Zn on 51.70% (P£0.05), I on 40.00% (P£0.05), Se on 36.36% (P£0.05), Mn on 34.21% (P£0.05), Cr on 31.30% (P£0.05), Cu 30.98% (P£0.05), Cd on 80.00% (P£0.05), Pb and Sn on of 66.67% (P£0.05) both, Al on 32.94% (P£0.05) in relation to control. When the Atysh and Subtilis probiotic  preparations  were included  in  combination,  an increase was recorded in Ca on 495.25% (P£0.01), P on 57.29% (P£0.05) and Mn 55.26% (P£0.05) and the reduction of certain trace elements: Co on 70.00% (P£0.05), Li on 69.00% (P£0.05), Zn on 52.70% (P£0.01), Cu on 45.11% (P£0.05), Ni on 43.24% (P£0.05), Fe on 32.93% (P£0.05), Cd on 80.00% (P£0.05), Sn on 74.00% (P£0.05), Pb on 66.67% (P£0.05) and Al on 61.97% (P£0.01). Thus, the selective changes in the level of macro- and microelements were revealed in the muscle tissue of fish when the Atysh and Subtilis probiotic preparations were included in the diet of carp.

Keywords: fish, carp, feeding, probiotic preparations, elemental status

Acknowledgments: the work was supported by the Russian Science Foundation, Project     No. 22-26-00281.

For citation: Zueva MS, Miroshnikova EP, Arinzhanov AЕ, Kilyakova YuV. The effect of probiotics on the elemental composition of muscle tissue in carp. Animal Husbandry and Fodder Production. 2023;106(2):8-20. (In Russ.). https://doi.org/10.33284/2658-3135-106-2-8

 

References

 
  1. Arinzhanov   Effect  of  ultrafine particles of Cu-Zn alloy and probiotic strain Bacillus subtilis on the elemental status of sterlet. Animal Husbandry and Fodder Production. 2022;105(4):21-34. doi: 10.33284/2658-3135-105-4-21
  2. Arinzhanov AE, Miroshnikova EP, Sizentsov AN, Kilyakova YV. Influence of ultradispersed feed additives, probiotic strains and their complexes on the content of essential trace elements in the carp body. Trace Elements in Medicine. 2021;22(S1):9-10. doi: 10.19112/2413-6174-2021-S1-02
  3. Ilyashenko AN. Bacillus probiotics in the feeding and maintenance of hydrobionts (review). Animal Husbandry and Fodder Production. 2022;105(4):165-180. doi: 10.33284/2658-3135-105-4-165
  4. Miroshnikova EP, Kvan OV, Sheyda EV, Rakhmatullin SG. The effectiveness of the combined use of soy-bifidum probiotic and plant extract in feeding broiler chickens. Animal Husbandry and Fodder Production. 2020;103(4):186-196. doi: 10.33284/2658-3135-103-4-186
  5. Adelina A, Feliatra F, Siregar YI, Putra I, Suharman I. Use of chicken feather meal fermented with Bacillus subtilis in diets to increase the digestive enzymes activity and nutrient digestibility of silver pompano Trachinotus blochii (Lacepede, 1801) [version 2; peer review: 2 approved]. F1000Research. 2021;10:25. doi: 10.12688/f1000research.26834.2
  6. Canham R, Gonzáles-Prieto AM, Elliott JE. Mercury exposure and toxicological consequences in fish and fish-eating wildlife from anthropogenic activity in Latin America. Integrated Environmental Assessment and Management. 2021;17(1):13-26. doi: 10.1002/ieam.4313
  7. Chang X, Kang M, Shen Y, Yun L, Yang G, Zhu L, Meng X, Zhang J, Su X. Bacillus coagulans SCC-19 maintains intestinal health in cadmium-exposed common carp (Cyprinus carpio L.) by strengthening the gut barriers, relieving oxidative stress and modulating the intestinal microflora. Ecotoxicology and Environmental Safety. 2021;228:112977. doi: 10.1016/j.ecoenv.2021.112977
  8. Chen X, Yi H, Liu Sh, Zhang Y, Su Y, Liu X et al. Probiotics improve eating disorders in mandarin fish (Siniperca chuatsi) induced by a pellet feed diet via stimulating immunity and regulating gut microbiota. Microorganism. 2021;9(6):1288. doi: 10.3390/microorganisms9061288
  9. Connolly M, Martínez-Morcillo S, Kalman J, Navas JM, Bleeker E, Fernández-Cruz ML. Considerations for bioaccumulation studies in fish with nanomaterials. Chemosphere. 2023;312(P.1):137299. doi: 10.1016/j.chemosphere.2022.137299
  10. Fiorella KJ, Okronipa H, Baker K, Heilpern S. Contemporary aquaculture: implications for human nutrition. Current Opinion in Biotechnology. 2021;70:83-90. doi: 10.1016/j.copbio.2020.11.014
  11. González-Palacios C, Fregeneda-Grandes JM, Aller-Gancedo JM. Possible mechanisms of action of two Pseudomonas fluorescens isolates as probiotics on saprolegniosis control in rainbow trout (Oncorhynchus mykiss Walbaum). Animals (Basel). 2020:10(9);26:1507. doi: 10.3390/ani10091507
  12. Iorizzo M, Albanese G, Letizia F, Testa B, Tremonte P, Vergalito F, Lombardi SJ, Succi M, Coppola R, Sorrentino E. Probiotic potentiality from versatile Lactiplantibacillus plantarumstrains as resource to enhance freshwater fish health. Microorganism. 2022;10(2):463. doi: 10.3390/microorganisms10020463
  13. Jafarpour D, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH. Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats. BMC Complementary and Alternative Medicine. 2017;17(1):291. doi: 10.1186/s12906-017-1803-3
  14. Kashparova O, Teien H-Ch, Pavlenko P, Salbu B, Eide DM, Levchuk S, Jensen KA, Protsak V, Hrechaniuk M, Kashparov V. Clean feed as countermeasure to reduce the 90Sr and 137Cs levels in fish from contaminated lakes. Journal of Environmental Radioactivity. 2023;258:107091. doi: 10.1016/j.jenvrad.2022.107091
  15. Kvan OV, Gavrish IA, Lebedev SV,  Korotkova AM, Miroshnikova EP, Serdaeva VA, Bykov AV, Davydova NO. Effect of probiotics on the basis of Bacillus subtilis and Bifidobacterium longum on the biochemical parameters of the animal organism. Environmental Science and Pollution Research. 2018;25(3):2175-2183. doi: 10.1007/s11356-017-0534-9
  16. Li Ch, Cai H, Li Sh, Liu G, Deng X, Bryden WL, Zheng A. Comparing the potential of Bacillus amyloliquefaciensCGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens. Poultry Science. 2022;101(11):102126. doi: 10.1016/j.psj.2022.102126
  17. Longo SB, Clark B, York R, Jorgenson AK. Aquaculture and the displacement of fisheries captures. Conservation Biology. 2019;33(4):832-841. doi: 10.1111/cobi.13295
  18. Luo M, Feng G, Ke H. Role of Clostridium butyricum, Bacillus subtilis, and algae-sourced β-1,3 glucan on health in grass turtle. Fish & Shellfish Immunology. 2022;113:244-256. doi: 10.1016/j.fsi.2022.09.034
  19. Milošković A, Stojković Piperac M, Kojadinović N, Radenković M, Duretanović S, Čerba D, Milošević Milosevic D, Simić V. Potentially toxic elements in invasive fish species Prussian carp (Carassius gibelio) from different freshwater ecosystems and human exposure assessment. Environmental Science and Pollution Research. 2022;29(19):29152-29164. doi: 10.1007/s11356-021-17865-w
  20. Mohammed AA, Zaki RS, Negm EA, Mahmoud MA, Cheng HW. Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens. Poultry Science. 2021;100(3):100906. doi: 10.1016/j.psj.2020.11.073
  21. Olmos J, Acosta M, Mendoza G, Pitones V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiology. 2020;202(3):427-435. doi: 10.1007/s00203-019-01757-2
  22. Outa JO, Kowenje ChO, Avenant-Oldewage A, Jirsa F. Trace elements in crustaceans, mollusks and fish in the kenyan part of lake victoria: bioaccumulation, bioindication and health risk analysis. Arch Environ Contam Toxicol. 2020;78(4):589-603. doi: 10.1007/s00244-020-00715-0
  23. Pinto FR, Duarte AM, Silva F, Barroso S, Mendes S, Pinto E, Almeida A, Sequeira V, Vieira AR, Gordo LS, Gil MM. Annual variations in the mineral element content of five fish species from the Portuguese coast. Food Research International. 2022;158:111482. doi: 10.1016/j.foodres.2022.111482
  24. Ribeiro M, Zephyr N, Silva JAL, Danion M, Guérin T, Castanheira I, Leufroy A, Jitaru P. Assessment of the mercury-selenium antagonism in rainbow trout fish. Chemosphere. 2022;286(Pt.2):131749. doi: 10.1016/j.chemosphere.2021.131749
  25. Safari R, Imanpour MR, Hoseinifar SH, Faheem M, Dadar M, Doan CV. Effects of dietary Lactobacillus casei on the immune, growth, antioxidant, and reproductive performances in male zebrafish (Danio rerio). Aquaculture Reports. 2022;25:101176. doi: 10.1016/j.aqrep.2022.101176
  26. Sarkar MMd, Rohani FMd, Hossain MAR, Shahjahan Md. Evaluation of heavy metal contamination in some selected commercial fish feeds used in Bangladesh. Biological Trace Element Research. 2022;200:844-854. doi: 10.1007/s12011-021-02692-4
  27. Shang X, Wang B, Sun Q, Zhang Y, Lu Y, Liu Sh, Li Y. Selenium-enriched Bacillus subtilis reduces the effects of mercury-induced on inflammation and intestinal microbes in carp (Cyprinus carpio var. specularis). Fish Physiology and Biochemistry. 2022;48(1):215-226. doi: 10.1007/s10695-022-01046-8
  28. Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms used by probiotics to confer pathogen resistance to teleost fish. Frontiers in Immunology. 2021;12:653025. doi: 10.3389/fimmu.2021.653025
  29. Sobolev N, Aksenov A, Sorokina T, Chashchin V, Ellingsen DG, Nieboerd E, Varakina Y, Veselkina E, Kotsur D, Thomassen Y. Essential and non-essential trace elements in fish consumed by indigenous peoples of the European Russian Arctic. Environmental Pollution. 2019;253:966-973. doi: 10.1016/j.envpol.2019.07.072
  30. Wang N, Jiang M, Zhang P, Shu H, Li Y, Guo Zh, Li Y. Amelioration of Cd-induced bioaccumulation, oxidative stress and intestinal microbiota by Bacillus cereus in Carassius auratus gibelio. Chemosphere. 2020;245:125613. doi: 10.1016/j.chemosphere.2019.125613
  31. Wu Zh, Qi X, Qu Sh, Ling F, Wang G. Dietary supplementation of Bacillus velezensis B8 enhances immune response and resistance against Aeromonas veronii in grass carp. Fish & Shellfish Immunology. 2021;115:14-21. doi: 10.1016/j.fsi.2021.05.012
  32. Yan FF, Wang WC, Cheng HW. Bacillus subtilis–based probiotic promotes bone growth by inhibition of inflammation in broilers subjected to cyclic heating episodes. Poultry Science. 2020;99(11):5252-5260. doi: 10.1016/j.psj.2020.08.051
  33. Yin Y, Yue X, Zhang D, Zhang P, Abdallah A, Yin Y, Cai Y, Li Y. Study of bioaccumulation, hematological parameters, and antioxidant responses of Carassius auratus gibelio exposed to dietary lead and Bacillus subtilis. Biological Trace Element Research. 2019;189(1):233-240. doi: 10.1007/s12011-018-1447-2
  34. Zhai Q, Wang H, Tian F, Zhao J, Zhang H, Chen W. Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquaculture Research. 2017;48(9):5094-5103. doi: 10.1111/are.13326
  35. Zou X, Jiang Sh, Zhang M, Hu H, Wu X, Liu J, Jin M, Cheng H. Effects of Bacillus subtilison production performance, bone physiological property, and hematology indexes in laying hens. Animals (Basel). 2021;11(7):2041. doi: 10.3390/ani11072041
       

Information about the authors:

Marina S Zueva, Postgraduate student of 1 year of study, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, January 9, 29, Orenburg, 460000; Assistant of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel: 8-922-853-24-46, e-mail: zueva@ms-98.ru.

Elena P Miroshnikova, Dr. Sci. (Biology), Professor, Head of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-987-862-98-86.

Azamat E Arinzhanov, Cand. Sci. (Agriculture), Associate Professor, Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-922-806-33-43.

Yulia V Kilyakova, Cand. Sci. (Biology), Associate Professor, Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-961-920-40-64.

 

The article was submitted 09.01.2023; approved after reviewing 03.03.2023; accepted for publication 13.06.2023.

Download