Marina S Zueva, Elena P Miroshnikova, Azamat Е Arinzhanov, Yulia V Kilyakova

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 2. Р. 198-213.

 

doi: 10.33284/2658-3135-106-2-198

                                                                                       

Review article

Modern research on the study of the intestinal microbiome in fish

 

Marina S Zueva1,2, Elena P Miroshnikova3, Azamat Е Arinzhanov4, Yulia V Kilyakova5

1Federal Research Centrе of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

2,3,4,5Orenburg State University, Orenburg, Russia

1,2zueva@ms-98.ru, https://orcid.org/0000-0002-2818-1312

3elenaakva@rambler.ru, https://orcid.org/0000-0003-3804-5151

4arin.azamat@mail.ru, https://orcid.org/0000-0001-6534-7118

5fish-ka06@mail.ru, https://orcid.org/0000-0002-2385-264X

 

Abstract. The effect of various feeds and additives on growth, hematological parameters and immunity in fish is often studied during research of its diet. Recent research in the field of aquaculture opens up prospects for studying the microbiome as a potential biomarker of the body. Interest in studying the intestinal microbiome of fish has increased for many reasons, including the fact that bony fish represent the largest group among vertebrates. In recent years, world scientists have studied the intestinal microbiome of more than 100 species of bony fish, coming to the conclusion that the main predominant representatives of the normal microbiota are Proteobacteria, Firmicutes, and Cyanobacteria. The researchers also revealed the dependence of the qualitative and quantitative composition of the fish microbiome on various environmental conditions, diet, age. This knowledge can become crucial in the future when growing fish in aquaculture conditions, reducing the economic costs of maintenance of individuals and improving the quality of finished products. The review examined the main representatives of the intestinal microbiome of fish, the influence of various environmental and nutritional factors on the composition of microorganisms, research in the use of feed additives and their effect on the composition of the intestinal microflora. The role of the influence of microorganisms on the host organism is generalized.

Keywords: microbiome, aquaculture, fish, fish feeding, feed additives, intestines, immunity

Acknowledgments: the work was supported by the Russian Science Foundation, Project No. 22-26-00281.

For citation: Zueva MS, Miroshnikova EP, Arinzhanov AЕ, Kilyakova YuV. Modern research on the study of the intestinal microbiome in fish (review). Animal Husbandry and Fodder Production. 2023;106(2):198-213. (In Russ.). https://doi.org/10.33284/2658-3135-106-2-198

 

References

 
  1. Avarskii ND, Kolonchin KV, Seregin SN, Betin OI. Development of commodity aquaculture in  Russia:  state  and  key areas. Economy, Labor, Management in agriculture. 2020;8(65):74-90. doi: 10.33938/208-74
  2. The state of world fisheries and aquaculture 2020. Sustainability in action. Rome: FAO; 2020:206 р. doi: 10.4060/ca9229en
  3. Acosta M, et al. Fish microbiome modulation and convenient storage of aquafeeds when supplemented with vitamin K1. Animals (Basel). 2022;12(23):3248. doi: 10.3390/ani12233248
  4. Adamovsky O, Buerger AN, Wormington AM, Ector N, Griffitt RJ, Bisesi Jr JH, Martyniuk CJ. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry. 2018;37(11):2758-2775. doi: 10.1002/etc.4249
  5. Ahmed N, Azra MN. Aquaculture production and value chains in the COVID-19 Pandemic. Current Environmental Health Reports. 2022;9(3):423-435. doi: 10.1007/s40572-022-00364-6
  6. Amendola-Pimenta M, Cerqueda-Garcia D, Zamora-Briseno JA, Couoh-Puga D, Montero-Munoz J, Arcega-Cabrera F, Ceja-Moreno V, Perez-Vega JA, Garcia-Maldonado JQ, Del Rio-Garcia M, Zapata-Perez O, Rodriguez-Canul R. Toxicity evaluation and microbiota response of the lined sole Achirus lineatus (Chordata: Achiridae) exposed to the light petroleum water-accommodated fraction (WAF). Journal of Toxicology and Environmental Health, Part A. 2020;83(8):313-329. doi: 10.1080/15287394.2020.1758861
  7. Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R. Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annual Review of Animal Biosciences. 2021;9:423-452. doi: 10.1146/annurev-animal-062920-113114
  8. Butt RL, Volkoff H. Gut microbiota and energy homeostasis in fish. Frontiers in Endocrinology. 2019;10:9. doi: 10.3389/fendo.2019.00009
  9. Chang X, Kang M, Shen Y, Yun L, Yang G, Zhu L, Meng X, Zhang J, Su X. Bacillus coagulans SCC-19 maintains intestinal health in cadmium-exposed common carp (Cyprinus carpio L.) by strengthening the gut barriers, relieving oxidative stress and modulating the intestinal microflora. Ecotoxicology and Environmental Safety. 2021;228:112977. doi: 10.1016/j.ecoenv.2021.112977
  10. Chen L, Lam JCW, Tang L, Hu Ch, Liu M, Lam PKS, Zhou B. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish. Environmental Science & Technology. 2020;54(12):7494-7503. doi: 10.1021/acs.est.0c02345
  11. Chiu S-T, Chu T-W, Simangunsong T, Ballantyne R, Chiu Ch-Sh, Liu Ch-H. Probiotic, Lactobacillus pentosus BD6 boost the growth and health status of white shrimp, Litopenaeus vannamei via oral administration. Fish & Shellfish Immunology. 2021;117:124-135. doi: 10.1016/j.fsi.2021.07.024
  12. Collins FWJ, Walsh CJ, Gomez-Sala B, Guijarro-Garcia E, Stokes D, Jakobsdottir KB, Kristjansson K, Burns F, Cotter PD, Rea MC, Hill C, Ross RP. The microbiome of deep-sea fish reveals new microbial species and a sparsity of antibiotic resistance genes. Gut Microbes. 2021;13(1):1921924. doi: 10.1080/19490976.2021.1921924
  13. Cui X, Zhang Q, Zhang Q, Zhang Y, Chen H, Liu G, Zhu L. Research progress of the gut microbiome in hybrid fish. Microorganisms. 2022;10(5):891. doi: 10.3390/microorganisms10050891
  14. DeBofsky A, Xie Y, Jardine TD, Hill JE, Jones PD, Giesy JP. Effects of the husky oil spill on gut microbiota of native fishes in the North Saskatchewan River, Canada. Aquatic Toxicology. 2020;229:105658. doi: 10.1016/j.aquatox.2020.105658
  15. Degregoria S, Casey JM, Barbera PH. Nutrient pollution alters the gut microbiome of a territorial reef fish. Marine Pollution Bulletin. 2021;169:112522. doi: 10.1016/j.marpolbul.2021.112522
  16. Diwan AD, Harke SN, Gopalkrishna P, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. Journal of Animal Physiology and Animal Nutrition. 2022;106(2):441-469. doi: 10.1111/jpn.13619
  17. Dulski T, Zakes Z, Ciesielski S. Characterization of the gut microbiota in early life stages of pikeperch Sander lucioperca. Journal of Fish Biology. 2018;92(1):94-104. doi: 10.1111/jfb.13496
  18. Elorza A, Rodriguez-Lago I, Martinez P, Hidalgo A, Aguirre U, Cabriada JL. Gastrointestinal infection with Aeromonas: incidence and relationship to inflammatory bowel disease. Gastroenterology & Hepatology. 2020;43(10):614-619. doi: 10.1016/j.gastrohep.2020.04.014
  19. El-Saadony MT, Alagawany M, Patra AK, Kar I, Tiwari R, Dawood MAO, Dhama K, Abdel-Latif HMR. The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology. 2021;117:36-52. doi: 10.1016/j.fsi.2021.07.007
  20. Fiorella KJ, Okronipa H, Baker K, Heilpern S. Contemporary aquaculture: implications for human nutrition. Current Opinion in Biotechnology. 2021;70:83-90. doi: 10.1016/j.copbio.2020.11.014
  21. Galindo-Villegas J, Bossier P, Reyes-Lopez FE. Editorial: Oral Immune-Enhancing Research in Fish. Frontiers in Microbiology. 2022;13:850026. doi: 10.3389/fimmu.2022.850026
  22. Garlock T, Asche F, Anderson J, Bjorndal T, Kumar G, Lorenzen K, Ropicki A, Smith MD, Tveteras R. A global blue revolution: aquaculture growth across regions, species, and countries (review). Reviews in Fisheries Science & Aquaculture. 2020;28(1):107-116. doi: 1080/23308249.2019.1678111
  23. Gatesoupe F-J, Fauconneau B, Deborde C, Madji Hounoum B, Jacob D, Moing A, Corraze G, Medale F. Intestinal microbiota in rainbow trout, Oncorhynchus mykiss, fed diets with different levels of fish-based and plant ingredients: A correlative approach with some plasma metabolites. Aquaculture Nutrition. 2018;24(5):1563-1576. doi: 1111/anu.12793
  24. Ghori I, Tubassam M, Ahmad T, Zuberi A, Imran M. Gut microbiome modulation mediated by probiotics: Positive impact on growth and health status of Labeo rohita. Frontiers in Physiology. 2022;13:949559. doi: 10.3389/fphys.2022.949559
  25. Gomez JA, Primm TP. A slimy business: the future of fish skin microbiome studies. Microbial Ecology. 2021;82:275-287. doi: 10.1007/s00248-020-01648-w
  26. Hano T, Ito M, Ito K, Uchida M. Alterations of stool metabolome, phenome, and microbiome of the marine fish, red sea bream, Pagrus major, following exposure to phenanthrene: A non-invasive approach for exposure assessment. Science of the Total Environment. 2021;752:141796. doi: 10.1016/j.scitotenv.2020.141796
  27. Heys C, Cheaib B, Busetti A, Kazlauskaite R, Maier L, Sloan WT, Ijaz UZ, Kaufmann J, McGinnity P, Llewellyn MS. Neutral processes dominate microbial community assembly in atlantic salmon, Salmo salar. Applied and Environmental Microbiology. 2020;86(8):e02283-19. doi: 10.1128/AEM.02283-19
  28. Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications. 2019;10(1):5029. doi: 10.1038/s41467-019-13036-1
  29. Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Lamot DM, Stegeman JA, Smidt H. Take care of the environment: housing conditions affect the interplay of nutritional interventions and intestinal microbiota in broiler chickens. Animal Microbiome. 2019;1(1):10. doi: 10.1186/s42523-019-0009-z
  30. Khurana H, Singh DN, Singh A, Singh Y, Lal R, Negi RK. Gut microbiome of endangered Tor putitora (Ham.) as a reservoir of antibiotic resistance genes and pathogens associated with fish health. BMC Microbiology. 2020;20:249. doi: 10.1186/s12866-020-01911-7
  31. Kim PS, Shin N-R, Lee J-B, Kim M-S, Whon TW, Hyun D-W, Yun J-H, Jung M-J, Kim JY, Bae J-W. Host habitat is the major determinant of the gut microbiome of fish. Microbiome. 2021;9(1):166. doi: 10.1186/s40168-021-01113-x
  32. Kwasek K, Thorne-Lyman AL, Philips M. Can human nutrition be improved through better fish feeding practices? a review paper. Critical Reviews in Food Science and Nutrition. 2020;60(22):3822-3835. doi: 10.1080/10408398.2019.1708698
  33. Leigh SC, Catabay C, German DP. Sustained changes in digestive physiology and microbiome across sequential generations of zebrafish fed different diets. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2022;273:111285. doi: 10.1016/j.cbpa.2022.111285
  34. Li X, Zhu Y, Ringo E, Wang X, Gong J, Yang D. Intestinal microbiome and its potential functions in bighead carp (Aristichthys nobilis) under different feeding strategies. PeerJ. 2018;6:e6000. doi: 10.7717/peerj.6000
  35. Lian Zh, Bai J, Hu X, Lu A, Sun J, Guo Y, Song Y. Detection and characterization of Aeromonas salmonicida subsp. salmonicida infection in crucian carp Carassius auratus. Veterinary Research Communications. 2020;44(2):61-72. doi: 10.1007/s11259-020-09773-0
  36. Limbu SM, Chen L-Q, Zhang M-L, Du Zh-Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: a review. Rewiews in Aquaculture. 2021;13(2):1015-1059. doi: 1111/raq.12511
  37. Liu Ch, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. Fish Physiology and Biochemistry. 2021;47:2041-2053. doi: 1007/s10695-021-01027-3
  38. Longo SB, Clark B, York R, Jorgenson AK. Aquaculture and the displacement of fisheries captures. Conservation Biology. 2019;33(4):832-841. doi: 1111/cobi.13295
  39. Ma X, Bi Q, Kong Y, Xu H, Liang M, Mai K, Zhang Y. Dietary lipid levels affected antioxidative status, inflammation response, apoptosis and microbial community in the intestine of juvenile turbot (Scophthalmus maximus L.). Comparative biochemistry and physiology. Part A: Molecular & Integrative Physiology. 2022;264:111118. doi: 10.1016/j.cbpa.2021.111118
  40. Miao Sh, Zhao Ch, Zhu J, Hu J, Dong X, Sun L. Dietary soybean meal affects intestinal homoeostasis by altering the microbiota, morphology and inflammatory cytokine gene expression in northern snakehead. Scientific Reports. 2018;8(1):113. doi: 1038/s41598-017-18430-7
  41. Minich JJ, Petrus S, Michael JD, Michael TP, Knight R, Allen EE. Temporal, environmental, and biological drivers of the mucosal microbiome in a wild marine fish, Scomber japonicus. mSphere. 2020;5(3):e00401-20. doi: 1128/mSphere.00401-20
  42. Nadal AL, Ikeda-Ohtsubo W, Sipkema D, Peggs D, McGurk Ch, Forlenza M, Wiegertjes GF, Brugman S. Feed, microbiota, and gut immunity: using the zebrafish model to understand fish health. Frontiers in Immunology. 2020;11:114. doi: 3389/fimmu.2020.00114
  43. Olmos J, Acosta M, Mendoza G, Pitones V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of Microbiology. 2020;202(3):427-435. doi: 1007/s00203-019-01757-2
  44. Park J, Kim EB. Insights into the gut and skin microbiome of freshwater fish, smelt (Hypomesus nipponensis). Current Microbiology. 2021;78:1798-1806. doi: 10.1007/s00284-021-02440-w
  45. Parris DJ, Morgan MM, Stewart FJ. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. Applied and Environmental Microbiology. 2019;85(3):e02479-18. doi: 10.1128/AEM.02479-18
  46. Perry WB, Lindsay E, Payne CJ, Brodie C, Kazlauskaite R. The role of the gut microbiome in sustainable teleost aquaculture. Proceedings of the Royal Society B: Biological Sciences. 2020;287(1926):20200184. doi: 10.1098/rspb.2020.0184
  47. Pratte ZA, Besson M, Hollman RD, Stewart FJ. The gills of reef fish support a distinct microbiome influenced by host-specific factors. Applied and Environmental Microbiology. 2018;84(9):e00063-18. doi: 1128/AEM.00063-18
  48. Raulo A, Ruokolainen L, Lane A, Amato K, Knight R, Leigh S, Stumpf R, White B, Nelson KE, Baden AL, Tecot SR. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. Journal of Animal Ecology. 2018;87(2):388-399. doi: 10.1111/1365-2656.12781
  49. Rezende RAE, Soares MP, Sampaio FG, Cardoso IL, Ishikawa MM, Dallago BSL, Rantin FT, Duarte MCT. Phytobiotics blend as a dietary supplement for Nile tilapia health improvement. Fish & Shellfish Immunology. 2021;114:293-300. doi: 1016/j.fsi.2021.05.010
  50. Rimoldi S, Gini E, Koch JFA, Iannini F, Brambilla F, Terova G. Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Veterinary Research. 2020a;16:118. doi: 1186/s12917-020-02335-1
  51. Rimoldi S, Torrecillas S, Montero D, Gini E, Makol A, Valdenegro V, Izquierdo M, Terova G. Assessment of dietary supplementation with galactomannan oligosaccharides and phytogenics on gut microbiota of European sea bass (Dicentrarchus Labrax) fed low fishmeal and fish oil based diet. PLoS One. 2020b;15(4):e0231494. doi: 10.1371/journal.pone.0231494
  52. Shafique L, Abdel-Latif HMR, Hassan F-UI, Alagawany M, Naiel MAE, Dawood MAO, Yilmaz S, Liu Q. The feasibility of using yellow mealworms (Tenebrio molitor): towards a sustainable aquafeed industry. Animals (Basel). 2021;11(3):811. doi: 10.3390/ani11030811
  53. Shang X, Wang B, Sun Q, Zhang Y, Lu Y, Liu Sh, Li Y. Selenium-enriched Bacillus subtilis reduces the effects of mercury-induced on inflammation and intestinal microbes in carp (Cyprinus carpio var. specularis). Fish Physiology and Biochemistry. 2022;48:215-226. doi: 10.1007/s10695-022-01046-8
  54. Shang X, Yu P, Yin Y, Zhang Y, Lu Y, Mao Q, Li Y. Effect of selenium-rich Bacillus subtilis against mercury-induced intestinal damage repair and oxidative stress in common carp. Comparative biochemistry and physiology. Part C: Pharmacology, toxicology & endocrinology. 2021;239:108851. doi: 1016/j.cbpc.2020.108851
  55. Spilsbury F, Foysal J, Tay A, Gagnon MM. Gut microbiome as a potential biomarker in fish: dietary exposure to petroleum hydrocarbons and metals, metabolic functions and cytokine expression in juvenile Lates calcarifer. Frontiers in Microbiology. 2022;13:827371. doi: 3389/fmicb.2022.827371
  56. Stagaman K, Sharpton ThJ, Guillemin K. Zebrafish microbiome studies make waves. Laboratory Animal. 2020;49(7):201-207. doi: 10.1038/s41684-020-0573-6
  57. Sumithra TG, Sharma KSR, Gayathri S, Ebeneezar S, Reshma KJ, Anikuttan KK, Narasimapallavan GI, Rameshkumar P, Sakthivel M, Prabu DL, Tamilmani G, Vijayagopal P, Gopalakrishnan A. Comparative evaluation of fish larval preservation methods on microbiome profiles to aid in metagenomics research. Applied Microbiology and Biotechnology. 2022;106:4719-4735. doi: 10.1007/s00253-022-12026-6
  58. Talwar Ch, Nagar Sh, Lal R, Negi RK. Fish gut microbiome: current approaches and future perspectives. Indian Journal of Microbiology. 2018;58(4):397-414. doi: 1007/s12088-018-0760-y
  59. Tyagi A, Singh B, Thammegowda NKB, Singh NK. Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome. Archives of Microbiology. 2019;201(3):295-303. doi: 10.1007/s00203-018-1615-y
  60. Whangchai N, Klahan R, Balakrishnan D, Unpaprom Y, Ramaraj R, Pimpimol T. Development of aeration devices and feeding frequencies for oxygen concentration improvement in 60-tones freshwater recirculating aquaculture and biofloc ponds of Asian seabass (Lates calcarifer) rearing. Chemosphere. 2022;307(Pt 3):135761. doi: 10.1016/j.chemosphere.2022.135761
  61. Wu Zh, Qi X, Qu Sh, Ling F, Wang G. Dietary supplementation of Bacillus velezensisB8 enhances immune response and resistance against Aeromonas veronii in grass carp. Fish & Shellfish Immunology. 2021;115:14-21. doi: 1016/j.fsi.2021.05.012
  62. Xu J, Xie Sh, Cji Sh, Zhang Sh, Cao J, Tan B. Short-term dietary antibiotics altered the intestinal microbiota and improved the lipid metabolism in hybrid grouper fed medium and high-lipid diets. Aquaculture. 2022;547:737453. doi: 1016/j.aquaculture.2021.737453
  63. Yang P, Hu H, Liu Y, Li Y, Ai Q, Xu W, Zhang W, Zhang Y, Zhang Y, Mai K. Dietary stachyose altered the intestinal microbiota profile and improved the intestinal mucosal barrier function of juvenile turbot, Scophthalmus maximus Aquaculture. 2018;486:98-106. doi: 10.1016/j.aquaculture.2017.12.014
  64. Yuan J, Wang Zh, Wang B, Mei H, Zhai X, Zhuang Zh, Chen M, Zhang Y. Non-specific immunity associated gut microbiome in Aristichthys nobilisunder different rearing strategies. Genes (Basel). 2021;12(6):916. doi: 3390/genes12060916
  65. Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, Arockiaraj J. Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture. 2020;12(3):1903-1927. doi: 1111/raq.12416
  66. Zhаo Y, Qin Zh, Huang Zh, Bao Zh, Luo T, Jin Y. Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. Environmental Pollution. 2021;282:117039. doi: 1016/j.envpol.2021.117039
 

Information about the authors:

Marina S Zueva, Postgraduate student of 1 year of study, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, January 9, 29, Orenburg, 460000; Assistant of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel: 8-922-853-24-46.

Elena P Miroshnikova, Dr. Sci. (Biology), Professor, Head of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-987-862-98-86.

Azamat E Arinzhanov, Cand. Sci. (Agriculture), Associate Professor, Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-922-806-33-43.

Yulia V Kilyakova, Cand. Sci. (Biology), Associate Professor, Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-961-920-40-64.

 

The article was submitted 10.02.2023; approved after reviewing 18.04.2023; accepted for publication 13.06.2023.

Download