Olga V Kvan

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 4. Р. 148-163.

doi:10.33284/2658-3135-106-4-148

Review article

Endogenous losses of substances: optimization of micronutrient supply of farm animal diets

 

Olga V Kvan1

1Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1kwan111@yandex.ru, https://orcid.org/0000-0003-0561-7002

 

Abstract. Mineral nutrition is an important issue for specialists in farm animal feeding. The complex interactions between various mineral sources and other nutritional components of feed, combined with their relatively low cost, has led to the current state of elevated mineral levels in broiler diets. New views on environmental friendliness have led to a rethinking of how we make practical diets, there are significant opportunities for reducing macronutrients, especially in the diets of "old" poultry. Our understanding of achieving an ideal balance of cations and anions in the diet is hampered by the lack of clarity in measuring the balance of elements in feed. The use of mineral sources with higher availability and digestibility will reduce the level of trace elements used in the diet of broilers. Reducing mineral levels will result in more economical diets and reduced release of chemical elements into the environment.

Keywords: broiler chickens, mineral nutrition, minerals, productivity, digestibility, endogenous losses

Acknowledgments: the work was performed in accordance to the plan of research works for 2021-2023 FSBRI FRC BST RAS (No. 0761-2019-0005).

For citation: Kvan OV. Endogenous losses of substances: optimization of micronutrient supply of farm animal diets (review). Animal Husbandry and Fodder Production. 2023;106(4): 148-163. (In Russ.). https://doi.org/10.33284/2658-3135-106-4-148

 

References

 
  1. Tuzikov RA, Lebedev SV, Arinzhanov AE, Arinzhanova MS. Study of the effect of probiotics on productive and hematological parameters of broiler blood. Animal Husbandry and Fodder Production. 2022;105(4):195-207. https://doi.org/10.33284/2658-3135-105-4-195
  2. Musabayeva LL, Sizova EA, Lutkovskaya YaV, Ivanishcheva Morphobiochemical parameters of blood of broilers using a silicon-containing feed additive. Animal Husbandry and Fodder Production. 2022;105(2):95-106. https://doi.org/10.33284/2658-3135-105-2-95
  3. Aksu DS, Aksu T, Onel SE. Does inclusion at low levels of organically complexed minerals versus inorganic forms create a weakness in performance or antioxidant defense system in broiler diets? Int J Poult Sci. 2012;11(10):666-672. doi: 10.3923/ijps.2012.666.672
  4. Ao T, Pierce JL, Pescatore AJ, Cantor AH, Dawson KA, Ford MJ, Shafer BL. Effects of organic zinc and phytase supplementation in a maize-soybean meal diet on the performance and tissue zinc content of broiler chicks. Br Poult Sci. 2007;48(6):690-695. doi: 10.1080/00071660701694072
  5. Ara ́ujo CSS, Hermes RG, Bittencourt LC, Silva CC, Ara ́ujo LF, Granghelli CA, Pelissari PH, Roque FA, Leite BGS. Different dietary trace mineral sources for broiler breeders and their progenies. Poult Sci. 2019;98(10):4716-4721. doi: 10.3382/ps/pez182
  6. Arriaza K, Brito J, Siques P, Flores K, Ordenes S, Aguayo D, López MDR, Arribas SM. Effects of zinc on the right cardiovascular circuit in long-term hypobaric hypoxia in wistar rats. Int J Mol Sci. 2023;24(11):9567. doi: 10.3390/ijms24119567
  7. Bao YM, Choct M.  Trace  mineral  nutrition  for  broiler  chickens  and  prospects  of application  of  organically  complexed  trace  minerals:  a    Anim  Prod  Sci.  2009;49:269-82. doi: 10.1071/EA08204
  8. Bradbury EJ, Wilkinson SJ, Cronin GM, Thomson PC, Bedford MR, Cowieson AJ. Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. Growth performance, skeletal health and intake arrays. Animal. 2014;8(7):1071-1079. doi: 10.1017/S1751731114001037
  9. Byrne L, Murphy RA. Relative bioavailability of trace minerals in production animal nutrition: a review. Animals. 2022;12(15):1981. doi: 10.3390/ani12151981
  10. Cao J, Guo Y, Luo X, Ge C, Hu Z, Wu L, lv Y, Lin G, Yu D, Liu B. Interactions between enzyme preparations and trace element sources on growth performance and intestinal health of broiler chicks. Poultry Science. 2023;102(12):103124. doi: 10.1016/j.psj.2023.103124
  11. Chrystal PV, Moss AF, AKhoddami A, Naranjo VD, Selle PH, Liu SY. Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism. Poult Sci. 2020;99(3):1421-1431. doi: 10.1016/j.psj.2019.10.060
  12. Cobb-Vantress.com. [Internet]. Cobb 500: Broiler performance and nutrition supplement. Available from: https://www.cobb-vantress.com/assets/5a88f2e793/Broiler-Performance-Nutrition-Supplement.pdf (accesed 14.11.2022).
  13. De Grande A, Leleu S, Delezie E, Rapp C, De Smet S, Goossens E, Haesebrouck F, Immerseel F, Ducatelle R. Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poultry Science. 2020;99(1):441-453. doi: 10.3382/ps/pez525
  14. Dong G, Chen H, Qi M, Dou Y, Wang Q. Balance between metallothionein and metal response element binding transcription factor 1 is mediated by zinc ions (review). Mol Med Rep. 2015;11(3):1582-1586. doi: 10.3892/mmr.2014.2969
  15. Ebbing MA, Vieira SL, Stefanello C, Berwanger E, Mayer A, Maria DD, Firman AK. An investigation on iron sources fed to broiler breeder hens and the corresponding color of laid eggshells on the performance of the resulting progeny. J Appl Poult Res. 2019;28(1):184-193. doi: 10.3382/japr/pfy064
  16. Espinosa CD, Stein HH. Digestibility and metabolism of copper in diets for pigs and influence of dietary copper on growth performance, intestinal health, and overall immune status: a review. Journal of Animal Science and Biotechnology. 2021;12:13. doi: 10.1186/s40104-020-00533-3
  17. Favero A, Vieira SL, Angel CR, Bess F, Cemin HS, Ward TL. Reproductive performance of Cobb 500 breeder hens fed diets supplemented with zinc, manganese, and copper from inorganic and amino acid-complexed sources. J Appl Poult Res. 2013;22(1):80-91. doi: 10.3382/japr.2012-00607
  18. Gaál KK, Sáfár O, Gulyás L, Stadler P. Magnesium in animal nutrition. J Am Coll Nutr. 2004;23(6):754S-757S. doi: 10.1080/07315724.2004.10719423
  19. Gao S, Yin T, Xu B, Ma Y, Hu M. Amino acid facilitates absorption of copper in the Caco-2 cell culture model. Life Sci. 2014;109(1):50-56. doi: 10.1016/j.lfs.2014.05.021
  20. Goff JP. Invited review: mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci. 2018;101(4):2763-2813. doi: 10.3168/jds.2017-13112
  21. Hafeez A. Effect of different feed treatment strategies on apparent mineral digestibility and retention in broilers and layers and egg quality in laying hens. [dissertation] Berlin; 2015:101 p.
  22. Hu Y, Liao X, Wen Q, Lu L, Zhang L, Luo X. Phosphorus absorption and gene expression levels of related transporters in the small intestine of broilers. Br J Nutr. 2018;119(12):1346-1354. doi: 10.1017/S0007114518000934
  23. Jiang SQ, Azzam MM, Yu H, Fan QL, Li L, Gou ZY, Lin XJ, Liu M, Jiang ZY. Sodium and chloride requirements of yellow-feathered chickens between 22 and 42 days of age. Animal. 2019;13(10):2183-2189. doi: 10.1017/S1751731119000594
  24. Khaksar V, Meda B, Narcy A. Updating the available P requirements of broilers. In: Francesch M, Torrallardona D, Brufau J, eds. Proceedings of the 21stEuropean Symposium on Poultry Nutrition. The Netherlands, Wageningen: Wageningen Academic Publishers; 2017:124-129.
  25. Kim JH, Jung H, Pitargue FM, Han GP, Choi HS, Kil DY. Effect of dietary calcium concentrations in low non-phytate phosphorus diets containing phytase on growth performance, bone mineralization, litter quality, and footpad dermatitis incidence in growing broiler chickens. Asian-Australas J Anim Sci. 2017;30(7):979-983. doi: 10.5713/ajas.17.0112
  26. Kleyn R. Chicken Nutrition: A guide for nutritionists and poultry professionals. Context Publications; 2013:347 р.
  27. Kleyn RJ, Ciacciariello M. Mineral nutrition in broilers: Where are we at? Proceedings of the Arkansas Nutrition Conference, Rogers, AR, 2021, 31st Aug. to 2nd Sept. USA, Arkansas, 2021;2021:1. https://scholarworks.uark.edu/panc/vol2021/iss1/1
  28. Korish MA, Attia YA. Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals. 2020;10(4): 727. doi: 10.3390/ani10040727
  29. Korver DR. Calcium nutrition, bone metabolism, and eggshell quality in longer-persisting layer flocks. In: Proceedings of the 31st Aust. Poult. Science Symp. Sydney, Australia, 16-19 February 2020. 2020;31:1-7.
  30. Kumar BА Hormonal regulation of metabolism, water, and minerals. In: Das PK, Sejian V, Mukherjee J, Banerjee D, editors. Textbook of veterinary physiology. Singapore: Springer; 2023:391-415. doi: 10.1007/978-981-19-9410-4_16
  31. Ledoux DR, Shannon MC. Bioavailability and antagonists of trace minerals in ruminant metabolism. In: Proceedings of the Florida Ruminant Symposium, Gainesville, FL, USA, 1-2 February 2005.  FL, Gainesville; 2005:23-37.
  32. Leeson S. Limiting the nutrient supply to gut pathogens. Elanco Master Class, Kuala Lumpur, Malaysia. 2018.
  33. Lesson S, Caston L. Using minimal supplements of trace minerals as a method of reducing trace mineral content of poultry manure. Anim Feed Sci Technol. 2008;142(3-4):339-347. doi:10.1016/j.anifeedsci.2007.08.004
  34. Levesque CL, Moehn S, Pencharz PB, Ball RO. Review of advances in metabolic bioavailability of amino acids. Livestock Science. 2010;133(1-3):4-9. doi:10.1016/j.livsci.2010.06.013
  35. Li W, Angel R, Kim SW, Brady K, Yu S, Plumstead PW. Impacts of dietary calcium, phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract. Poult Sci. 2016;95(3):581-58 doi: 10.3382/ps/pev354
  36. Li W, Angel R, Plumstead PW, Enting H. Effects of limestone particle size, calcium source and phytase on standardized ileal calcium and phosphorus digestibility in broilers. Poult Sci. 2021;100(2):900-909. doi: 10.1016/j.psj.2020.10.075
  37. Liao X, Lu L, Li S, Liu S, Zhang L, Wang G, Li A, Luo X. Effects of selenium source and level on growth performance, tissue selenium concentrations, antioxidation, and immune functions of heat-stressed broilers. Biol Trace Elem Res. 2012;150(1-3):158-1 doi: 10.1007/s12011-012-9517-3
  38. Lim HS, Ji SI, Hwang H, Kang J, Park YH, Lee HH, Kim TH. Relationship between bone density, eating  habit,  and  nutritional  intake  in college students. J Bone Metab. 2018;25(3):181-186. doi: 10.11005/jbm.2018.25.3.181
  39. Lv G, Yang C, Wang X, Yang Z, Yang W, Zhou J, Mo W, Liu F, Liu M, Jiang S. Effects of different trace elements and levels on nutrients and energy utilization, antioxidant capacity, and mineral deposition of broiler chickens. Agriculture. 2023;13(7):1369. doi: 10.3390/agriculture13071369
  40. Manzi P, Di Costanzo MG, Ritota M. Content and nutritional evaluation of zinc in pdo and traditional italian cheeses. Molecules. 2021;26(20):6300. doi: 10.3390/molecules26206300
  41. Mion B, Van Winters B, King K, Spricigo JFW, Ogilvie L, Guan L, DeVries TJ, McBride BW, LeBlanc SJ, Steele MA, Ribeiro ES. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre- and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. J Dairy Sci. 2022;105(8):6693-6709. doi: 10.3168/jds.2022-21908
  42. Molenda M, Kolmas J. The role of zinc in bone tissue health and regeneration-a review. Biol Trace Elem Res. 2023;201(12):5640-5651. doi: 10.1007/s12011-023-03631-1
  43. Mosna K, Jurczak K, Krężel A. Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn. Metallomics. 2023;15(10):mfad061. doi: 10.1093/mtomcs/mfad061
  44. Moss AF, Chrystal PV, Dersjant-Li Y, Liu SY, Selle PH. The ranked importance of dietary factors influencing the performance of broiler chickens offered phytase-supplemented diets by the Plackett-Burman screening design. Br Poult Sci. 2019;60(4):439-448. doi: 10.1080/00071668.2019.1605154
  45. M'Sadeq SA, Wu SB, Choct M, Swick RA. Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poult Sci. 2018;97(9):3176-3182. doi: 10.3382/ps/pey197
  46. Nasir Z, Peebles ED. Symposium: avian embryo nutrition and incubation. Poult Sci. 2018;97(8):2994-2995. doi: 10.3382/ps/pey137
  47. National Research Council. Nutrient Requirements of Poultry. 9th Rev. Ed. Washington, DC: The National Academies Press; 1994:157 p.
  48. Nollet L, Van Der Klis JD, Lensing M, Spring P. The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. J Appl Poult Res. 2007;16(4):592-59 doi: 10.3382/japr.2006-00115
  49. Novotry JA, Turnlund J. Molybdenum disposition in humans during molybdenum depletion and repletion. The Journal of Nutrition. 2006;136(4):953-957. doi: 10.1093/jn/136.4.953
  50. Perera D, Palliyaguruge C, Eapasinghe D, Liyanage D, Seneviratne R, Demini D, Jayasinghe M, Faizan M, Rajagopalan U, Galhena B, Hays H, Senathilake K, Tennekoon K, Samarakoon S. Factors affecting iron absorption and the role of fortification in enhancing iron levels. Nutrition Bulletin. 2023;48(4):442-457. doi: 10.1111/nbu.12643
  51. Plumstead PW, Romero-Sanchez H, Maguire RO, Gernat AG, Brake J. Effects of phosphorus level and phytase in broiler breeder rearing and laying diets on live performance and phosphorus excretion. Poult Sci. 2007;86(2):225-2 doi: 10.1093/ps/86.2.225
  52. Quiniou N, Narcy A. Pourquoi et comment integrer la balance electrolytique dans les criteres de formulation des aliments pour monogastriques. Treizièmes Journées de la Recherche Avicole et Palmipèdes à Foie Gras, Tours, 20 et 21 mars 2019. JRA-JRFG;2019:145-156.
  53. Renna M, D'Imperio M, Maggi S, Serio F. Soilless biofortification, bioaccessibility, and bioavailability: Signposts on the path to personalized nutrition. Front Nutr. 2022;9:966018. doi: 10.3389/fnut.2022.966018
  54. Scott ML, Nesheim MC, Young RJ. Nutrition of chicken. NY, Ithaca: ML Scott and Associates publishers; 1982:562 p.
  55. Surai PF, Kochish II, Romanov MN, Griffin DK. Nutritional modulation of the antioxidant capacities in poultry: the case of vitamin E. Poult Sci. 2019;98(9):4030-4041. doi: 10.3382/ps/pez072
  56. Suttle NF. Mineral Nutrition of Livestock, 4th ed. UK, London: CABI; 2010:587 p.
  57. Swiatkiewicz S, Arczewska-Wlosek A, Józefiak D. The efficacy of organic minerals in poultry nutrition:  review  and  implications of recent studies. Word´s Poult Sci J. 2014;70(3):475-486. doi: 10.1017/S0043933914000531
  58. Vieira SL. Chelated   minerals  for  Rev  Bras  Ciênc  Avic.  2008;10(2):73-79. doi: 10.1590/S1516-635X2008000200001
  59. Walk CL, Romero LF, Cowieson AJ. Towards a digestible calcium system for broiler chicken nutrition: A review and recommendations for the future. Anim Feed Sci and Tech. 2021;276:114930. doi: 10.1016/j.anifeedsci.2021.114930
  60. Woodmansee AN, Imlay JA. Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods Enzymol. 2002;349:3-9. doi: 10.1016/s0076-6879(02)49316-0
  61. Zaefarian F, Cowieson A, Pontoppidan K, Abdollahi M, Ravindran V. Trends in feed evaluation for poultry with emphasis on in vitro techniques. Animal Nutrition. 2021;7(2):268-281. doi: 10.1016/j.aninu.2020.08.006
  62. Zamany S, Sedghi M, Hafizi M, Nazaran MH, KimiaeiTalab MV. Organic acid-based chelate trace mineral supplement improves broiler performance, bone composition, immune responses, and blood parameters. Biol Trace Elem Res. 2023;201(10):4882-4899. doi: 10.1007/s12011-023-03555-w
  63. Zhao J, Shirley RB, Vazquez-Anon M, Dibner JJ, Richards JD, Fisher P, Hampton T, Christensen KD, Allard JD, Giesen AF. Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broiler. Appl Poult Res. 2010;19(4):365-372. doi: 3382/japr.2009-00020
 

Information about the authors:

Olga V Kvan, Cand. Sci. (Biology), Senior Researcher, Acting Head of the Department of Feeding Farm Animals and Feed Technology named after S.G. Leushin, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, January 9, 29, cell.: 89225485657.

The article was submitted 21.11.2023; approved after reviewing 24.11.2023; accepted for publication 11.12.2023.

Download